
Haskell Ready to Dazzle the Real World

Martijn M. Schrage Arjan van IJzendoorn Linda C. van der Gaag
Department of Information and Computing Sciences, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
{martijn,afie,linda}@cs.uu.nl

Abstract
Haskell has proved itself to be a suitable implementation language
for large software projects. Nevertheless, surprisingly few graphi-
cal end-user applications have been written in Haskell. Based on
our experience with the development of the Bayesian network tool-
box Dazzle, we argue that the language is indeed very well suited
for writing such applications. Popular language features, such as
higher-order functions, laziness, and light syntax for data struc-
tures, turn out to hold their ground in a large interactive end-user
application. Haskell, combined with the truly platform-independent
GUI library wxHaskell, is ready for building real-world applica-
tions.

Categories and Subject DescriptorsD.1.1 [Applicative (Func-
tional) Programming]; D.3.3 [Language Constructs and Features]

General Terms Languages, Design

Keywords Haskell, Graphical user interface, Bayesian networks,
wxHaskell, Application

1. Introduction
Haskell has come a long way from its first versions in the early
nineties to the language it is now. The Glasgow Haskell Com-
piler [12] is a complete and stable compiler that produces efficient
code, and is suitable for implementing industrial-strength software
applications. With the development of the wxHaskell library [9],
Haskell now has a truly platform-independent GUI library at its
disposal. Nevertheless, most large Haskell applications seem to be
either development tools or server-side applications, such as the
GHC compiler itself, or the version management system darcs [14].
Other examples include a Haskell webserver [10], and the Flippi [2]
and Postmaster [15] systems. Only very few large end-user appli-
cations with a graphical user interface have been built, which may
leave critics of the language wondering whether Haskell is suitable
for building such systems.

We argue that this small number of end-user applications has
nothing to do with the language Haskell itself. While developing
the Bayesian network toolbox Dazzle, we found that Haskell is very
well suited for writing a large GUI-based application targeted at a
user community of non-Haskell programmers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

Dazzle is a tool for constructing, editing and analyzing Bayesian
networks, developed by the Decision Support Systems group of
Utrecht University. It is a multi-platform application and is cur-
rently being used on both Windows and Linux platforms. Section 2
provides an overview of Bayesian networks and of Dazzle.

One of the most striking observations has been the speed of
the development process. Often, features were implemented well
before the planned deadline, which is rarely the case in software
projects. The algorithms in Haskell stay close to their pseudo-
code counterparts found in literature, both in elegance and size,
and even improve them with respect to generality. Therefore, the
source code is considerably smaller than that of similar systems.
For comparison, Dazzle consists of 10,000 lines of code whereas
the Java-based Elvira system [4], which has roughly the same
functionality, consists of 220,000 lines of code.

In this paper, we provide experimental evidence that the Haskell
features that work so well in toy examples still hold their ground
in a large interactive application. Furthermore, we identify several
patterns for which we have developed library modules that may be
of interest to other Haskell implementors as well. More specifically,
the following points are the contributions of this paper.

• We show that the advantages of the core features of Haskell (e.g.
higher-order functions, laziness, and light syntax for data struc-
tures) also hold for a large GUI-based application. To our initial
surprise, most beneficial were basic Haskell features rather than
special language constructs or advanced types. In Section 3 we
discuss the Haskell features that helped us most, followed in
sections 4, 5, 6 and 7 by illustrations from the source code.

• Dazzle keeps track of two kinds of documents: a Bayesian
network and patient data. Both kinds of documents need file
management and undo handling, for which we developed a
persistent-document abstraction, described in Section 4.

• Time-consuming pure algorithms pose a problem in a GUI
application because user-interface events cannot be handled
during their evaluation. In Section 6 we introduce an abstraction
that keeps the user interface responsive and offers a progress bar
and a cancel button, while keeping the algorithm itself pure.

• For the user interface, we have developed a set of higher-level
controls on top of the wxHaskell GUI library. Together, these
eXtended and Typed Controls form the XTC library, which is
described in Section 7 and will be part of a future version of
wxHaskell. The typed interface of XTC offers more ease of use
and safety.

• Our application provides proof that the wxHaskell library scales
to large applications. Although monadic GUI libraries are
sometimes frowned upon as being too imperative for a func-
tional language, we experienced that wxHaskell combined with
the XTC library provides an effective means for building a so-
phisticated user interface.

Figure 1. A typical Dazzle session.

2. Bayesian networks and Dazzle
Bayesian networks [7] in essence are models of uncertainty. While
studying uncertainty traditionally is a field of statistics, it is cur-
rently showing an increasing impact from the field of computer
science. With the advance of modern algorithmic techniques and
powerful implementation constructs in fact, the field of computer
science has rendered reasoning with complex probabilistic models
feasible. Decision-support systems are now able to handle real-life
problems in which uncertainty is predominant.

A Bayesian network is a concise model of a probability dis-
tribution over a collection of statistical variables that describe the
characteristics of an application domain. It consists of a graphi-
cal structure, in which each node represents a statistical variable.
The arcs in the structure capture the causal influences among the
variables. For each variable, a probability table is specified that de-
scribes the strengths of these influences. A Bayesian network can
be used to compute any probability of interest over its variables.
For a diagnostic application, for example, the various features of a
problem case are entered into the network, which is then used to
compute the probability distribution over the possible diagnoses.
Alternatively, if a diagnostic category is entered, the network can
predict the features that will most likely be observed in a problem
case typical of this category.

Bayesian networks are most suitable for addressing problems
in domains that are scientific in nature. At Utrecht University, the
Decision-Support Systems group is developing models for a range
of problems in the biomedical domain, such as the staging of cancer
of the oesophagus, the prediction of handicaps in premature new-
borns, and the early detection of classical swine fever in pig herds.
These networks are being developed with the help of domain ex-
perts and are projected for use in a real-life setting. Other poten-
tial applications are weather forecasting and simulating the effects
of climatological changes. Although most Bayesian networks have

been constructed for applications of a scientific nature, other exam-
ples include models for predicting prices on the stock market and
for printer trouble shooting.

Both to support the construction of real-life Bayesian net-
works and to arrive at fully operational decision-support systems, a
Bayesian network toolbox is indispensable. Such a toolbox should
provide not just the formalisms for capturing Bayesian networks
and the associated algorithms for probabilistic reasoning, but also
tools for the (automated) construction, editing and evaluation of
networks. A number of commercial Bayesian network toolboxes
are currently available, such as the well-known Hugin system [6].
Furthermore, a number of public-domain tools are available, such
as Genie/Smile [3] and Elvira [4]. Until recently, the Decision-
Support Systems group had worked with a public-domain Lisp-
based system from the nineties to which various features had been
added over the years, by a range of programmers. The system had
become rather unmanageable and unacceptably slow. Since the
currently available toolboxes lacked various features that were im-
portant to the group’s ongoing research activities, we decided to
re-design the toolbox, using the Haskell programming language.

The Dazzle toolbox (see Figure 1) now offers a variety of tools
to support the (automated) construction, editing and evaluation of
Bayesian networks. For probabilistic reasoning, the toolbox builds
upon the C++ library of the public-domain Smile system. The
graphical interface is closely tailored not just to the end-users of
Bayesian networks but, even more importantly, to the network de-
signers. As such, it offers a larger variety of options for editing,
storing and retrieving partially constructed models than other cur-
rently known toolboxes. The graphical interface effectively shields
the Haskell specifics from the end-users and designers, some of
whom have no background in computer science. Experience with
the Dazzle toolbox shows that it effectively and efficiently supports
the construction of large real-life Bayesian networks.

3. Haskell features that matter to Dazzle
Over fifteen years ago, John Hughes advocated the importance of
higher-order functions and laziness in his paper “Why functional
programming matters” [5]. Although, at the time, not many large
applications in a functional language existed (and in fact neither did
the language Haskell), we found that his statements indeed remain
to hold for large systems. In addition to higher-order functions and
laziness, we identified several other features that we found to be
important:

• Light syntax for data types
• Purity
• Static typing

Note that these features correspond to the often mentioned
strong points of Haskell. In this sense, Dazzle confirms that these
features retain their value in a large GUI-based application.

For the largest part, the source code conforms to the Haskell ’98
standard with the exception of the XTC library, which makes use
of scoped type variables and multi-parameter type classes. In de-
veloping Dazzle, we did not use many advanced Haskell features.
Of course, this does not say anything about the usefulness of these
features: Dazzle is a specialized application with mostly numeri-
cal algorithms, and other applications may very well benefit from
Haskell extensions.

We take a closer look at the above-mentioned features, which
is followed by several more concrete examples in the subsequent
sections.

Higher-order functions
Higher-order functions are essential to a programming pattern

that we used several times. First, we simply implement an algo-
rithm for a specific instance of a problem. Then, once the algo-
rithm has been implemented and tested, an aspect of it is captured
by a function that is passed as a parameter. The result is a more
general algorithm that can be parameterized for several instances
of the problem. The process leads to more reuse, and at the same
time, the refactorings required to abstract from the specific feature
often make the algorithm more elegant. Examples of the result of
this process are the classifier-learning algorithm presented in Sec-
tion 5 and the persistent-document abstraction in Section 4.

Laziness
Apart from many small uses of laziness, the implementation

contains several more interesting examples. The classifier-learning
algorithm examines a search space of alternative classifiers, which
is represented by a lazy data structure and is evaluated only as far
as necessary. Another example is the glueing together of the pure
and lazy hill climber and the monadic and interactive progress bar
(see Section 6). The loopy-propagation inference algorithm (not
discussed in this paper) also heavily relies on laziness. This algo-
rithm produces a lazy list of approximations, and is parameterized
with a function representing the stop condition, much like Hughes’s
implementation of Newton-Raphson square roots.

Light syntax for data types
List manipulations are commonplace, but appear most notably

in the numerical algorithms of classifier learning and loopy prop-
agation. Many algorithms on Bayesian networks involve formulas
consisting of sums or products of complex terms. List comprehen-
sions together with thesum andproduct functions turned out to
provide an elegant and concise mechanism for implementing these
algorithms. The final code generally stays close to the mathematical
specification.

In addition, there are several tree-based algorithms that benefit
from the light syntax for traversing and constructing abstract data
structures. The hill climber from the classifier module is an exam-
ple of this.

Purity
The absence of side effects is useful for reasoning about and

understanding a program. This is especially important for a large
software project, since a substantial part of development time tends
to be spent on inspecting code, rather than writing it. Furthermore,
not having side effects makes it possible to safely abstract any part
of a function and replace it by a parameter.

As there are no destructive updates in a pure language, data
structures can safely be shared in the heap. This fact has greatly
simplified the implementation of the undo facility, which is part of
the persistent-document abstraction. After each edit operation, we
store the previous document value in a history list. An undo oper-
ation simply amounts to selecting one of the previous documents.
The memory consumption by the document list is kept small due to
sharing between successive documents.

Static typing
Even though the process of type checking does not prevent

logical errors, it seems to catch the majority of programming errors.
Once a function is accepted by the type checker it is often correct.

A good example of where we use the Haskell type system to
catch more programming errors can be found in the XTC library
(see Section 7). The typed interface guarantees that values retrieved
from user-interface widgets have the correct type. Furthermore,
user selections in widgets are represented by values rather than in-
dices. As a result, XTC helps to make the user-interface code safer
and also shorter since many conversions are performed automati-
cally.

4. Persistent documents
Both the network and the collection of cases in the data-browser
tool are documents that are stored on disk. For both kinds of docu-
ments we want to provide undo and redo operations. To avoid code
duplication we have devised a small and very flexible framework
calledPersistentDocument that manages storage and undo/redo
operations for a document. The reason for combining these two is
because there are (subtle) interactions between them. When a doc-
ument is saved, for example, the documents in the undo and redo
buffers have to be marked as dirty (that is, changed with respect to
the disk version). We describe the framework because of its gener-
ality, but also because the implementation relies on Haskell being
pure, which makes it possible to share data structures in the heap.

To use the framework the programmer has to supply several
call-back functions. Some of these have to do with updating the
user interface after a change, and others with prompting the user
of the application for input. The framework takes cares of all
administration and calls the user-supplied functions at appropriate
times.

4.1 The type of persistent documents

Since we want to do destructive updates of a document, we use an
IO reference:

type PersistentDocument doc = IORef (PDRecord doc)

ThePersistentDocument type is polymorphic in the type of
the document that it manages. The recordPDRecord contains all
the information the framework requires:

data PDRecord doc = PD
{ document :: doc

-- file management
, fileName :: Maybe String
, dirty :: Bool

-- undo & redo
, history :: [(String, Bool, doc)]
, future :: [(String, Bool, doc)]
, limit :: Maybe Int

-- call-back functions
, updateUndo :: Bool -> String -> IO ()
, updateRedo :: Bool -> String -> IO ()
, updateSave :: Bool -> IO ()
, updateTitleBar :: Maybe String -> Bool -> IO ()
, saveToDisk :: String -> doc -> IO Bool
, saveAsDialog :: Maybe String -> IO (Maybe String)
, saveChangesDialog :: IO (Maybe Bool)
}

The file name and dirty bit are stored for file management. The
file name can beNothing in case the document has never been
saved to disk. This can be presented to the user as a document
with name “Untitled”. The dirty bit is usually visualized by writing
“(modified)” or “*” behind the file name.

Thehistory andfuture lists store undo and redo information
respectively. They do not only store a specific version of the docu-
ment, but also the corresponding dirty bit and a message describing
the edit action leading to that version of the document. This mes-
sage can be shown to the user to indicate what will be undone or
redone (e.g. “Undo remove node”). The undo buffer may be limited
to a certain size using thelimit field.

There are seven call-back functions that need to be provided
by the library user. Default implementations for applications using
wxHaskell are provided for all butsaveToDisk. This call-back
is supposed to write the document to disk, and we cannot give a
default implementation since nothing is known about the document
type. The update functions update the user interface with new
information. The functionupdateTitleBar gets the current file
name and dirty bit and presents this information in the window title
bar for example. The other update functions update the respective
menu items.

The remaining two call-back functions prompt the user for in-
put; thesaveChangesDialog asks whether the user wants to save
the changes to the document upon closing.Nothing is returned
if the user cancels, and otherwise a boolean constant indicating
whether to save or not. ThesaveAsDialog asks the user for a file
name and returnsNothing in case the user cancels.

The framework takes care of handling cancellation by the user
at different points. If the user tries to close an untitled document
that has been modified, he or she will be asked whether to save the
changes or not; if so, a save-as dialog is shown. This process can
be cancelled at any point and may even be cancelled by the system,
for example if the disk is full.

Note that the types of the call-back functions are not wxHaskell
specific. This means that the framework can be used equally well
with other GUI libraries; it can even be used to build an application
with a textual interface. The defaults provided use the wxHaskell
library, but they are defined in a separate module and are not
required to use the framework.

The undo and redo buffers are implemented naively as lists of
past and future documents. For our specific network data structure,
the documents in these lists are shared as much as possible, and
thus in a sense only the differences between the documents are
stored. Heap profiling shows that making many changes to a large
network without a limit on the undo buffer costs little memory.

In an impure language such a naive implementation would store
a complete copy of the document every time, even if there is only a
small change, and memory usage could easily become a problem.
Possible solutions are to either mimic sharing or use invertible edit
actions to store the difference between documents. Both are less
elegant and more error-prone than the simple implementation in
Haskell.

4.2 Operations on persistent documents

The framework offers many functions to manipulate persistent doc-
uments and these functions in turn call the supplied call-back func-
tions. Here we will look at four typical operations:

setDocument ::
String -> doc -> PersistentDocument doc -> IO ()

superficialSetDocument ::
doc -> PersistentDocument doc -> IO ()

isClosingOkay ::
PersistentDocument doc -> IO Bool

undo ::
PersistentDocument a -> IO ()

The functionsetDocument changes the document stored in the
persistent document data structure. It appends the current document
to the undo buffer with the given message (e.g. “remove node”),
clears the redo buffer and marks the document as dirty. The user
interface will then be updated to reflect these changes.

The functionsuperficialSetDocument also sets the docu-
ment but neither changes the undo buffer, nor sets the dirty bit.
This is useful if something as volatile as the selection is part of the
document; in most applications, changes to the selection cannot be
undone and thus the document should not be marked dirty when
the selection changes.

The functionisClosingOkay checks whether it is safe to close
the document. If the document has been modified, the user is
prompted with a dialog that asks whether changes should be saved.
If the answer is yes, a save dialog may follow. If in the end the
document was saved,True is returned. If the answer is no or the
user cancelled the process somewhere down the line,False is
returned.

Finally,undo takes the first element of the undo buffer and uses
it as the new document. The old document is moved to the redo
buffer. Here is the actual code of theundo function:

undo :: PersistentDocument a -> IO ()
undo pDocRef =
do { pDoc <- readIORef pDocRef

; when (not (null (history pDoc))) $
do { let (msg, newDirty, newDoc) = head (history pDoc)

newPDoc = pDoc
{ document = newDoc
, dirty = newDirty
, history = tail (history pDoc)
, future = (msg, dirty pDoc

, document pDoc)
: future pDoc

}
; writeIORef pDocRef newPDoc
; updateGUI pDocRef
}}

To conclude, the persistent-document framework deals with a
lot of subtle issues when writing an editor. It takes care of file
management, undo and redo operations, and their interactions. The
framework leaves the choice of the GUI library open and its imple-
mentation relies on Haskell being pure and sharing data structures
for efficient undo management.

Figure 2. A naive classifier.

5. Learning classifiers
A classifier is a simple network that can be automatically derived
from a data set. It consists of a class variable and several attributes.
Figure 2 shows an example classifier with class variable “C” and
attributes “A1” up to “A8”. The purpose of a classifier is to predict
the value of the class variable based on the values of the attributes.
The figure shows a classifier with no arcs between the attributes.
More advanced classifiers with better classification performance
allow for trees or even polytrees on the attributes. Such structures
on the attributes are referred to asdependence structures.

Often, not all attributes are equally relevant for the classification
process, and the performance of the classifier can be improved by
using only a selection of the attributes. Dazzle’sattribute-selection
algorithm employs a hill-climbing search to determine a (locally)
optimal selection of attributes. To determine the performance of a
classifier, the algorithm uses a scoring function, which weighs both
the size of the classifier (smaller is better), and how well it models
the data set. The search can start with a classifier containing all
attributes and remove attributes until the score degrades (backward
search) or start with an empty classifier and add attributes (forward
search).

Altogether there are three parameters in searching for the best
classifier: the dependence structure on the attributes, the direction
of the search and the scoring function. In the literature on classifier
learning, each combination of these parameters results in a sep-
arate algorithm. In contrast, thanks to higher-order functions and
laziness, the Haskell implementation is a single algorithm that is
parameterized with the necessary ingredients. It uses a lazy data
structure to represent the search space.

Although the algorithms presented in this section are not novel,
the interesting aspect is that they have been taken directly from
the Dazzle sources. Often, an algorithm loses some of its elegance
when it is incorporated in an application, because exceptions need
to be handled and output needs to be relayed to the user. The
classifier algorithms are an example of the contrary; elegant core
algorithms can be part of the actual implementation.

Search strategy
The search strategy is encoded by a function that builds a search

tree for a set of attributes. First, we introduce the data type for
search trees.

data SearchTree a = SearchNode a [SearchTree a] String

Each node in a search tree of typeSearchTree a contains a
value of typea, a list of subtrees, and a message string that is shown
during the search process. The type constructorSearchTree is a
functor; a simple map functionmapSearchTree :: (a->b) ->
SearchTree a -> SearchTree b maps a function on all values
in the search tree. We omit its definition here.

The search strategy that should be adopted during attribute se-
lection is determined by a parameter of typeSearchTreeBuilder
String, which is a function that takes a list of attribute names and
returns a search tree in which the nodes contain different subsets of
this list of names. The general type of a search tree builder is:

type SearchTreeBuilder a = [a] -> SearchTree [a]

A forward search tree is a tree with no attributes in its root,
and in which a child has one attribute more than its parent. Each
leaf contains all attributes. The algorithm for building the backward
search tree is similar.

forwardSearchTree :: SearchTreeBuilder String
forwardSearchTree attrs =

makeTree [] attrs "Classifier without attributes"
where makeTree bs as msg =

SearchNode bs [makeTree (a:bs) (as\\[a])
("Added attribute ’"++a++"’")

| a <- as] msg

Scores and dependence structures
In addition to the search strategy, the attribute-selection algo-

rithm has two more parameters: the score function for the classifier
and the type of dependence structure that is built on the attributes:

type ScoreFunction = DataSet -> Classifier -> Double

type StructureBuilder = DataSet -> Classifier
-> [NodeNr] -> Classifier

The score function takes a data set and a classifier and returns
the score of the classifier. The tree builder takes a data set, a
classifier, and a list of node numbers denoting the attributes on
which a dependence structure must be built. The result is a classifier
with a dependence structure on its attributes.

Attribute selection
Now we are ready to define the attribute-selection function

itself.

attributeSelect :: DataSet -> String -> [String]
-> ScoreFunction
-> SearchTreeBuilder String
-> StructureBuilder
-> (Classifier, [String])

attributeSelect dataSet classVariable attributes
scoreFun searchTree structureBuilder =

let attributesSearchTree = searchTree attributes
classifierSearchTree =

mapSearchTree (makeClassifier
dataSet classVariable
attributes structureBuilder)

attributesSearchTree
in hillClimb classifierSearchTree

(scoreFun dataSet)

TheattributeSelect function creates an appropriate search
tree by calling the search-tree builder argument on the list of at-
tributes for the classifier. The resulting search tree contains lists
of attributes in its nodes. By mappingmakeClassifier onto the
attribute search tree, we (lazily) get a search tree that contains
classifiers in its nodes. The partially parameterized application of
makeClassifier takes a list of attribute names, constructs a clas-
sifier with the appropriate dependence structure, and learns its
probability tables from the data set:

makeClassifier :: DataSet -> String -> [String]
-> StructureBuilder -> [String]
-> Classifier

The functionhillClimb takes as arguments a search tree con-
taining values of a typea, together with a score function for values
of typea. The result is a pair of the result of the search (in our case
a classifier) and a list of strings explaining the steps of the search
process. We present a simplified version first, which undergoes a
minor modification in Section 6 to allow progress reporting and
user cancellation of the algorithm.

hillClimb :: SearchTree a -> (a -> Double)
-> (a, [String])

hillClimb tr scoreFn = climb tr (scoreNode tr) where
scoreNode (SearchNode val _ _) = scoreFn val
climb (SearchNode val children msg) score =

let scored = [(c, scoreNode c) | c <- children]
sorted = reverse $

sortBy (\(_,x) (_,y) -> compare x y)
scored

(r, prgs) =
case sorted of

((c,sc):_) ->
if sc > score
then climb c sc
else (val, ["Local maximum."])

[] -> (val, ["No more children."])
in (r, msg : prgs)

The local functionclimb gets two parameters: a search tree
and the score of the root node of that search tree. The algorithm
sorts the child search trees based on their score and if the highest
score (sc) is higher than the current score, hill climbing continues
at the corresponding child (c). Otherwise, the current score is a
locally optimal score, and its corresponding value is returned as the
result. If the sorted list of children is empty, the current value is also
returned as the result.

6. A lazy progress bar
In a GUI-based application computations are performed in call-
back functions. Because these functions are evaluated in the main
thread, the application will stop responding if a certain algorithm
takes a long time. In order to stay responsive, the algorithm should
perform GUI-library calls that temporarily return control to the
event handler. As these calls are monadic, this creates a problem
when the time-consuming function is pure. Other problems with
pure functions are that progress cannot be monitored and that the
computation cannot be cancelled. We solve these three problems
by using an abstraction of progress, and letting a special progress
dialog lazily evaluate the result.

The main idea behind the progress abstraction is that instead
of evaluating the result of a computation directly, we evaluate an
accompanying list of progress steps, which is produced lazily by
the algorithm. Once the progress list has been fully evaluated, the
result itself is also evaluated. Others have used the technique of
lazily returning a list of steps [1, 18] but not in the context of an
interactive application.

The hill climber, discussed in the previous section, returns a list
of messages, which we can evaluate step by step. However, each
step can still take quite a long time, since for a single message, all
children in the search tree need to have their classifier evaluated
and scored. To make the computation of the progress list more
fine grained, we introduce a data typeProgressItem, in which we
represent both messages and explicit progress steps. We introduce
a type synonymProgress for a list of progress items.

type Progress = [ProgressItem]

data ProgressItem = Message String | Tick

Figure 3. The lazy progress bar in action.

With a slight modification, we can get the hill climber to pro-
duce aTick for each classifier that is scored.

hillClimb :: SearchTree a -> (a -> Double)
-> (a, Progress)

hillClimb tr scoreFn = climb tr (scoreNode tr) where
scoreNode (SearchNode val _ _) = scoreFn val
climb (SearchNode val children msg) score =

let scored = [(c, scoreNode c) | c <- children]
ticks = [seq sc Tick | (_,sc) <- scored]
sorted = reverse $

sortBy (\(_,x) (_,y) -> compare x y)
scored

(r, prgs) =
case sorted of

((c,sc):_) ->
if sc < score
then climb c sc
else (val, [Message "Local maximum."])

[] -> (val, [Message "No more children."])
in (r, Message msg : ticks ++ prgs)

A list of ticks is returned along with the message in the second
element of the result ofhillClimb. Because of the application
seq sc Tick, eachTick that is evaluated forces the evaluation of
a classifier score, causing the corresponding classifier to be created,
learned, and scored. Hence, after evaluating the ticks for each of the
children of a certain node in the search tree, the list of scores can
be sorted without delay.

Now we can evaluate the list of ticks one by one, and when the
list has been fully evaluated, the result of the search algorithm has
also been evaluated. TheprogressDialog takes care of this:

progressDialog :: Window a -> String -> Int
-> (b, Progress) -> IO (Maybe b)

The progressDialog function takes as arguments a parent
window, a title, a maximum number of ticks, and a pair contain-
ing a result and its progress. If the cancel button is pressed, the di-
alog returnsNothing. Otherwise, it returnsJust result, where
result is the fully evaluated result. Figure 3 contains a screenshot
of the progress dialog. The dialog shows a bar for the progress and
displays the messages in the progress list.

A progress dialog needs to know the maximum number of
ticks a computation may require. In case of attribute selection,
this number of ticks is easily computed from the search strategy.
However, the number represents only a possible maximum amount
of time. Often, the hill climber will terminate before the leaves of
the search tree are reached, and hence the bar will not reach the
end.

The implementation of the progress dialog is surprisingly sim-
ple. At its heart is a monadic loop that traverses the progress list.
On aMessage, the message text is displayed in the dialog, whereas
on aTick, the progress bar advances. After each step, a function is

called to handle GUI events. The loop continues only if the cancel
button has not been pressed.

The progress-bar abstraction makes it easy to separate a compu-
tation from user-interface details. A multithreaded approach might
seem more appropriate to handle responsiveness, but it does not
handle progress indication, as the algorithm still needs to provide
cues about its progress. The modifications shown in this section can
be applied to other time-consuming algorithms in Dazzle as well.

7. XTC: eXtended and Typed Controls
The wxHaskell library [9] offers a standard set of widgets (called
controls), such as buttons, text fields, radio buttons, and selection
lists. It is built on top of the C++ library wxWidgets [16] and pro-
vides an interface of a much higher level. Programs using wx-
Haskell are considerably smaller than C++ wxWidgets programs.
Still, data that is shown in a control is accessed in the form of
strings and list selections are represented by integer indices, which
are rather low-level abstractions for a strongly typed language such
as Haskell. As a remedy, we developed the moduleXTC, which de-
fines a set of extended and typed controls for wxHaskell. The con-
trols are typed versions of existing wxHaskell controls.

As an example, we look at a text field in which a user can enter
a value of typeDouble. It is created withentry <- textEntry
frame [text := "3.14"]. The value is accessible through
the text attribute, which is of typeString. At any point where
the value is read, we must parse the string to a double, and anal-
ogously, when setting the value, it must be converted to a string.
Furthermore, if the value in the text field is not a proper floating
point number, some kind of visual feedback would be desirable.

A second example illustrating the need for a higher-level ab-
straction is found in radio buttons and selection lists. These controls
typically show a set of values, whereas the selection is returned
as an index. After retrieving the selection, we have to perform a
lookup on exactly the list of values that was used when setting the
items for the control.

XTC controls keep track of typed values and items, rather than
being string based. Selections in XTC controls consist of actual val-
ues instead of indices. In the near future, the XTC library will be-
come part of the wxHaskell distribution. Although the implementa-
tion of the library is small (around 300 lines), it uses relatively ad-
vanced wxHaskell features that fall beyond the scope of this paper.
Hence, we only discuss the programming interface of the controls
and give examples of their use.

7.1 wxHaskell

Before we introduce the XTC controls, we discuss a few aspects
of the wxHaskell library. Below is a small wxHaskell program that
creates a window containing a text entry and a set of radio buttons.
Figure 4 shows a screenshot of the program.

main = start $
do { f <- frame [text := "Sample"]

; radio <- radioBox f Vertical
["Naive Bayesian"
, "Tree augmented naive Bayes"
, "k-dependence Bayesian"]
[text := "Dependence structure"]

; textEntry <- entry f [text := "3.14"]
; set radio [on select := handler textEntry radio]
; set f [layout := column 5 [widget radio

, widget textEntry]]
}

where handler textEntry radio =
do { n <- get textEntry text -- n :: String

; s <- get radio selection -- s :: Int
; putStrLn $ n ++ ", " ++ show s
}

Figure 4. A sample wxHaskell program.

With the functionframe we first create a window with title
“Sample” to which we add a set of radio buttons and a text field.
The text field is created withentry and contains the initial text
"3.14". The functionhandler is attached to selection events of
the radio buttons. On selection, the value of the text entry (with
type String) and the current selection of the radio buttons (with
typeInt) are printed. In the last step of the program, the layout of
the frame is set to a column that contains the two controls, separated
by a vertical space of 5 pixels.

Attributes and properties
Constructor functions such asframe andentry take a list of

properties(e.g.text := "Sample") that specify the behavior and
appearance of the created control. Properties are constructed with
the := data constructor, which takes an attribute and a value. We
can access and modify the values of properties with the functions
get andset:

get :: forall a w. w -> Attr w a -> IO a
set :: forall w. w -> [Prop w] -> IO ()

The attribute type (Attr w a) has two parameters:a is the type
of the value of the attribute, andw is the type of the widget of
which it is an attribute. Because attributes are defined for classes
of widgets, their types include a context. For instance, fortext we
have:

text :: forall w. (Textual w) => Attr w String

These complex types are awkward in a discussion, and therefore
we will simply refer to the type of the attribute value as being
the type of that attribute. Thus, we will refer totext as having
typeString, rather thanforall w. (Textual w) => Attr w
String.

Phantom types for inheritance
To model the inheritance relation from the underlying C++ li-

brary wxWidgets, wxHaskell employs so-calledphantom types[8,
9]. Every wxHaskell object is represented by a value of type
Object a, which has a type variablea that is not reflected in
the value itself; regardless of its type, each object is represented
by a plain machine address. The phantom type parameter in a wx-
Haskell type is used to represent its inheritance path. To encode
the path, wxHaskell defines a dummy type without values for each
object in the hierarchy. For example, forWindow andFrame, we
have:

data CWindow a
data CFrame a

Using the dummy types, the inheritance paths are encoded as
follows.

type Window a = Object (CWindow a)
type Frame a = Object (CWindow (CFrame a))

Thus, a function taking aWindow a argument will also accept a
Frame a, but a function taking aFrame awill not accept aWindow
a. It is also possible to enforce an exact match: an argument of
type Window () must be exactly a window, and not a subclass.
The encoding works for both co- and contravariant arguments. A
more extensive discussion of inheritance encoding using phantom
types can be found in Daan Leijen’s PhD thesis [8].

7.2 Typed Controls

We discuss two typed controls in more detail: thevalueEntry and
theradioView. Together, these two controls cover most aspects of
typed controls. The remaining XTC controls are discussed at the
end of this section.

ValueEntry
A ValueEntry is a typed version of aTextEntry. It has the

same appearance in the user interface, except that it changes color
when its text cannot be parsed. Rather than setting the text in the
value entry directly as a string, we set it to a certain value, which is
converted to a string by the value entry. If we get the contents of a
value entry, it parses its text and returns a typed value.

Similar tomkTextEntryEx, the constructormkValueEntryEx
takes a parent window and a list of properties as arguments. In
addition, it takes a parameter of typex -> String for presenting
its value and a parameter of typeString -> Maybe x for parsing.

mkValueEntryEx :: Window a
-> (x -> String) -> (String -> Maybe x)
-> [Prop (ValueEntry x ())]
-> IO (ValueEntry x ())

The type of the returned value entry has two parameters,x and
(). Thex denotes the type of its value and the() is the phantom
type used to encode inheritance. Note that the() phantom type
means that the result is exactly a value entry and not a subclass. In
contrast, the type of the window parameter ofmkValueEntry has a
free type variablea, meaning that the parameter may be a window
or a subclass.

XTC also provides a convenience functionmkValueEntry that
usesshow andread for presenting and parsing the value.

mkValueEntry :: (Show x, Read x)
=> Window a -> [Prop (ValueEntry x ())]
-> IO (ValueEntry x ())

In an ordinary text entry, the content of the entry is accessed
through the attributevalue of type String. In contrast, a value
entry of typeValueEntry x a also has an attributetypedValue
of type Maybe x that contains the typed content. AMaybe type
is used because the text in the value entry might not correctly
parse to a value of typex, in which caseget returnsNothing.
Unfortunately, the wxHaskell framework does not allow theget
operation of an attribute to have a different type from theset
operation. Hence, we need to useJust when setting the value. If
typedValue is set toNothing, nothing happens.

If we let f denote the frame, we can create a value entry that
contains the value3.14 with:

vEntry <- mkValueEntry f [typedValue := Just 3.14]

Theget operation forvEntry has type:

get vEntry typedValue :: IO (Maybe Double)

If the value entry contains an incorrect string when a user
presses return or when the entry loses focus, the background color
of the value entry is set to light grey.

RadioView
TheRadioView is the typed counterpart of theRadioBox con-

trol. Instead of providing a list of strings for the radio items, and
retrieving the selected item in the form of an integer, the radio view
allows a list of values for its items. The selection is returned as
one of these values, rather than an index. In order for the radio
view to be able to show the value items, it needs a function of
typex -> String that converts a value to its label. The function
mkRadioViewEx creates a radio view:

mkRadioViewEx :: Window a -> (x -> String)
-> Orientation -> [x]
-> [Prop (RadioView x ())]
-> IO (RadioView x ())

The constructor function takes as arguments the parent window,
a label function, the orientation (Horizontal or Vertical), a list
of radio items, and a list of properties. In addition to the attribute
selection of typeInt, a radio view of typeRadioView x a has
an attributetypedSelection of typex.

An example from Dazzle shows how radio views are used. The
classifier-learning algorithm has a parameter that specifies the type
of dependence structure that is built on the attributes. There are
three alternatives: no structure (Naive), a TAN tree, or a k-DB
polytree. The data typeDependenceStructure represents these
alternatives:

data DependenceStructure = Naive | TAN | KDB

For the textual representation that should appear in the user
interface, we define a functionlabel:

label :: DependenceStructure -> String
label Naive = "Naive Bayesian"
label TAN = "Tree augmented naive Bayes"
label KDB = "k-dependence Bayesian"

Now, we can create a radio view for the three alternatives:

treeRadio <- mkRadioView frame label Vertical
[Naive, TAN, KDB]
[typedSelection := Naive
, text := "Dependence structure"]

We can obtain the selection through thetypedSelection at-
tribute, which returns a value of typeDependenceStructure:

get treeRadio typedSelection :: IO DependenceStructure

The typedSelection is also set with a typed value rather
than an index. Items are compared based on their labels to avoid
requiring that items are an instance ofEq. If the radio view contains
items with duplicate labels, theset operation selects the first of the
duplicates.

Similar to the value entry, there is also a class-based function
mkRadioView. Instead of taking a label function, it requires the
type of its items to be an instance of theLabeled class:

mkRadioView :: Labeled x => Window a -> Orientation
-> [x] -> [Prop (RadioView x ())]
-> IO (RadioView x ())

The definition of the classLabeled is

class Labeled x where
toLabel :: x -> String

Note that we do not use theShow class for displaying an item
in a radio view. The reason for this is that a label is often a rather
verbose representation that would be awkward to have as aShow
instance.

Other controls
The XTC library offers four more typed controls:ListView,

MultiListView, ChoiceView andComboView. Because their be-
havior and interface is largely similar to the radio view, we only
discuss them briefly.

A ListView a shows a list of values of typea, in which a user
can make a selection. The list view is similar to the radio view,
except for its appearance, and the fact that its items do not have to
be set at creation time. This is reflected in the type of its constructor
function:

mkListView :: Labeled x
=> Window a -> [Prop (ListView x ())]
-> IO (ListView x ())

In contrast tomkRadioView, mkListView has no parameters
for the orientation and the list of items. The orientation is always
vertical, and the items are set through thetypedItems attribute.
For a list view of typeListView a, the attributetypedItems has
type[a].

A MultiListView is a list view that allows multiple ele-
ments in the selection. Instead of atypedSelection attribute,
a MultiListView a has an attributetypedSelections, which
has type[a].

Finally, there are theChoiceView and theComboView. A
choice view is a list view in which only the current selection is
shown. The other items are available through a drop-down menu
that appears when the choice view is clicked. The interface of the
choice view is equal to the list view interface. A combo view is a
choice view that, in addition to selecting from a list, allows textual
editing of the selection. The interface is again equal to the list view.

Conclusion
The XTC library provides a higher-level abstraction on several

existing wxHaskell controls. The XTC controls are both easier to
use and safer, because conversions between the strings or indices
and actual values are performed automatically. The library will be
part of a future wxHaskell distribution.

8. General observations
Besides our experiences with specific language features discussed
in the previous sections, we made a number of general observations
in the process of developing an application in Haskell. These obser-
vations concern the performance and reliability of the implementa-
tion, as well as the development process itself. Although most of
the claims made in this section are hard to substantiate, we believe
they are worth sharing.

Performance
The code that GHC generates for our project is very efficient in

terms of execution speed. Dazzle replaces the LISP-based system
Ideal [17] and is an order of magnitude faster; operations that took
hours now take minutes. For probabilistic inference we have reused
the optimized C++ library SMILE that underlies Genie [3] to save
development time early on in the project. Therefore, algorithms
that rely heavily on inference will automatically be efficient. In the
near future, we will implement inference in Haskell making the
application independent of SMILE.

It is interesting to note that we have paid little attention to op-
timizing the code. We have always been able to focus on elegance
and correctness, and this has resulted in efficient algorithms. Not
having to worry about performance helped to create correct code
quickly.

Memory performance, which for Haskell is closely related to
execution speed, is also satisfactory. There are no space leaks that

we are aware of, and the program uses a modest amount of memory
(less than 32Mb). Heap profiles indicate that memory is released at
appropriate times. Moreover, Dazzle users often run the application
for hours on end, and we have had no reports on excessive memory
usage or crashes.

Reliability
Stability is an important issue for all applications, especially

those you trust your data with. In a strongly-typed programming
language that uses garbage collection, two major classes of runtime
errors are eliminated. What remains are the applications of partial
functions to values outside the domain, and system-related errors
such as an out-of-memory exception. These remaining exceptions
are caught and displayed to the user urging him or her to tell the
developers about the problem. After this, it is probably wise to save
data and exit the program. This way of dealing with exceptions
has proven to be useful and will be included in the wxHaskell
distribution at some point. Fortunately, the mechanism has only
been triggered three times in the year and a half that Dazzle has
been in use. The amount of logical programming errors has also
been small, especially when compared to the authors’ experience
with large C++ and Java projects.

Development environment
We have only used poor man’s debugging tools such as the

functionstrace and putStr and interactive testing. Thanks to
Haskell’s abstraction facilities, algorithms can be expressed in
small functions that can be tested independently.

We believe that the development environment for Haskell could
easily be improved upon. The combination of your favorite editor
and GHCi works well, but there are features that would make
the programming process more pleasant. For example, we would
like to be able to quickly see the type or definition of a function
even when the current module cannot be compiled. The Clean
IDE provides such an environment for the Clean programming
language [13]. There are efforts to create an IDE for Haskell (e.g.
Haste [19] and an integration with Eclipse [11]), and we hope that
a usable integrated environment will soon become available. The
convenient layout combinators of wxHaskell make the absence of
a GUI builder less important.

9. Conclusion
The Dazzle toolbox is a large end-user application with a sophis-
ticated graphical user interface. Except for an inference algorithm
written in C++, the entire application is implemented in Haskell,
using wxHaskell for its user interface. The implementation pro-
vides evidence that basic Haskell features scale well to larger appli-
cations. The features that proved especially beneficial are: laziness,
higher-order functions, light syntax for data types, purity, and static
typing.

Besides the application itself, the project has produced several
spin-offs: a progress indicator for pure algorithms, an abstraction
for persistent documents, and the XTC library for typed controls.

Future work will include the addition of more functionality as
well as a Haskell implementation of the inference algorithm. With
its own inference algorithm Dazzle will be independent of the C++
SMILE library. Furthermore, it will be interesting to compare the
inference algorithms with respect to performance.

The development of Dazzle depends on the reliable and effi-
cient compiler GHC and the platform-independent GUI library wx-
Haskell. With these two tools we believe that Haskell is ready for
building real-world applications. In other words, functional pro-
gramming still matters!

Acknowledgments
We would like to thank Bastiaan Heeren and his Advanced Func-
tional Programming students for their useful comments on an ear-
lier version of this paper. Furthermore, we thank the anonymous
referees for their detailed comments and suggestions. For infer-
ence we use the SMILE reasoning engine for graphical probabilis-
tic models contributed to the community by the Decision Systems
Laboratory, University of Pittsburgh [3]. This research was (partly)
supported by the Netherlands Organisation for Scientific Research
(NWO).

References
[1] O. Chitil. Pretty printing with lazy dequeues.Transactions on

Programming Languages and Systems (TOPLAS), 27(1):163–184,
Jan. 2005.

[2] P. Cowderoy. Flippi: a Wiki clone written in Haskell.http:
//www.flippac.org/projects/flippi.

[3] M. Druzdzel et al. Genie and SMILE.http://www.sis.pitt.
edu/∼genie.

[4] Elvira Consortium. Elvira: an environment for probabilistic graphical
models. InFirst International Workshop on Probabilistic Graphical
Models (PGM02), Sept. 2002.

[5] J. Hughes. Why Functional Programming Matters.Computer
Journal, 32(2):98–107, 1989.

[6] Hugin Expert A/S. Hugin Expert.http://www.hugin.com.
[7] F. Jensen.Bayesian Networks and Decision Graphs. Springer, 2001.

[8] D. Leijen. Theλ Abroad – A Functional Approach to Software
Components. PhD thesis, Department of Computer Science,
Universiteit Utrecht, The Netherlands, Nov. 2003.

[9] D. Leijen. wxHaskell – A portable and concise GUI library for
Haskell. InACM SIGPLAN Haskell Workshop (HW’04). ACM Press,
Sept. 2004.

[10] S. Marlow. Writing High-Performance Server Applications in
Haskell, Case Study: A Haskell Web Server. InACM SIGPLAN
Haskell Workshop (HW’00). ACM Press, Sept. 2000.

[11] Object Technology International, Inc. Eclipse platform – A universal
tool platform.http://www.eclipse.org.

[12] S. L. Peyton Jones et al. The Glasgow Haskell Compiler.http:
//www.haskell.org/ghc.

[13] R. Plasmeijer, M. van Eekelen, et al. The Clean programming
language.http://www.cs.ru.nl/∼clean.

[14] D. Roundy. darcs.http://abridgegame.org/darcs.
[15] P. Simons. Postmaster ESMTP Server.http://postmaster.

cryp.to.
[16] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, et al. The wxWidgets

library. http://www.wxwidgets.org.
[17] S. Srinivas and J. Breese. IDEAL: A software package for analysis

of influence diagrams. InProceedings of the Sixth Uncertainty
Conference in AI, Cambridge, MA, Sept. 1990.

[18] D. Swierstra. Combinator parsers: From toys to tools. In G. Hutton,
editor,Electronic Notes in Theoretical Computer Science, volume 41.
Elsevier Science Publishers, 2001.

[19] D. Waern et al. haste – Haskell TurboEdit.http://haste.dyndns.
org:8080/news.php.

