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Chapter 1

Introduction

Many software applications involve some form of editing: a user views a data structure
and provides edit gestures in order to modify this data structure. Different kinds of doc-
uments require different ways of editing, and hence a multitude of editors exists, each
having its own specific edit model and user-interface conventions. Moreover, since ap-
plication designers have different ideas on what constitutes a pleasant edit model, even
editors for the same document type may show significantly different edit behavior. Nev-
ertheless, the core edit behavior, whether performed in a word-processor or a spreadsheet,
is largely similar: document fragments may be copied and pasted, and new parts of the
document may be constructed by selecting from menus or entering text.

An obvious research question is to abstract from the specific aspects of each editor and
construct a generic system that can be instantiated to a specific editor application. Build-
ing an editor with such a system would require only a fraction of the amount of engi-
neering required to build an editor from scratch. A generic editor enhances consistency
between editors, because all instantiated editors share the same edit model, and, further-
more, it facilitates the integration of editors for different document types.

Especially in the nineteen-eighties, many research projects on structure editing were
started. However, the editors developed were generally perceived as being overly re-
strictive, and attempts at developing less restrictive systems resulted mainly in text-only
editors. Further, regardless of the restrictiveness of the edit model, the applicability of the
generic editors was generally limited to source editors for programming languages and
simple word-processing applications. In the years following, research interest in structure
editing steadily declined, and many of the generic editors that were developed are now
used only for educational purposes at the institute of origin.

In our opinion, the problem with most of these structure editors is that they either focus
on editing the document structure, or the presentation (often just text). The document-

1



2 1 Introduction

oriented editors may have a powerful presentation mechanism, but poor editing support
in the presentation, which results in a restrictive edit model. On the other hand, purely
presentation-oriented editors lack edit operations on the document, and have relatively
weak presentation mechanisms.

With the increasing popularity of the XML format for representing structured documents,
the advantages of a powerful generic editor are becoming even more apparent. Many
XML document types are being developed, but support for editing documents of these
types is still poor. There is a choice between using an expensive custom-made editor, or
a generic XML editor, but the functionality of the latter does not come close to what a
presentation-oriented (WYSIWYG) editor could potentially offer. It is, for instance, not
possible to use any of the current XML editors as a convenient editor for a programming
language or for mathematical equations.

In this thesis we investigate whether and how the advantages of structure editing and
a powerful presentation formalism can be combined with a non-restrictive presentation-
oriented edit model. The result of this research is the presentation-oriented structure editor
Proxima. Before we introduce Proxima, we discuss the basic concepts that play a role in
editing structured documents. In Section 1.2 we introduce the Proxima editor, followed
by a summary of the introduced terminology in Section 1.3 and an overview of the thesis
in Section 1.4.

1.1 Preliminaries

1.1.1 Structured documents

A structured documentis a collection of logical entities between which a structural rela-
tion exists. Examples of structured documents are HTML pages, program sources, word
processor documents, etc.

In this thesis, we restrict ourselves to structured documents that have a tree structure that
can be described by an EBNF grammar. Although graphs can be viewed as structured
documents as well, algorithms for performing computations over graphs are far more
complex than tree algorithms. Furthermore, parsers for graphs are less well understood
than parsers for trees, as well as computationally more expensive.

In cases where we explicitly want to describe the structure of a document fragment, we
use monomorphic (i.e. parameter free) Haskell [70] data types together with the list type.
Example document fragments are represented by Haskell terms. For example, a document
representing the let expression “let x = 1; y = 2 in x+ y” can be denoted in Haskell by:

Let [Decl (Ident“x” ) (Int 1), Decl (Ident“y” ) (Int 2)] (Sum(Ident“x” ) (Ident“y” ))
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1.1.2 XML

The eXtensible Markup Language XML [16] is an increasingly popular standard for rep-
resenting structured documents. The standard is a simplified descendant of SGML [38]
(Standard Generalized Markup Language). An XML document is a sequence of charac-
ters that encodes a tree structure. The nodes of the tree are referred to aselements. The
leaves of the tree are text or attributes (name-value pairs describing properties of an ele-
ment). The structure of the tree is represented with opening and closingtags, and if these
tags are nested correctly, the XML document iswell-formed.

The let expression example of the previous section can be represented in XML by:

<Let><Decl><Ident>x</Ident><Int>1</Int></Decl>

<Decl><Ident>y</Ident><Int>2</Int></Decl>

<Sum><Ident>x</Ident><Ident>y</Ident></Sum></Let>

The type of an XML document can be specified in several formalisms. TheDocument
Type Definition(DTD) is part of the XML specification, and basically describes an EBNF
grammar over XML elements. A much more expressive formalism is XML Schema [87],
which itself is a sublanguage of XML. Compared to the DTD formalism, the advantages
of using a Schema definition include more control over textual content, as well as a form
of inheritance. If an XML document conforms to a certain DTD or Schema, it is called
valid. A third standard, which is not as common as DTDs or Schemas, is the Relax NG
standard [23]. Relax NG is a combination of Relax [55] and TREX [22], and is based on
regular expressions.

The number of standards for sublanguages of XML, also referred to as dialects, is rapidly
growing. Besides the already mentioned XML Schema, we provide a few more examples.

The Mathematical Markup Language MathML [20] is a standard for describing mathe-
matical equations and expressions. Technical documentation can be represented with the
DocBook [92] standard, which exists for XML as well as for SGML. The standard can
also be used for papers and books. Finally, we mention the XHTML [2] standard, which
is an XML encoding of HTML. Although similar, an HTML document is not necessarily
an XML document, since HTML is a dialect of SGML rather than XML.

1.1.3 Editing

While the termeditor is usually only associated with plain-text editors such as Emacs [81]
or the ubiquitous Microsoft Notepad, we will use the term in a much broader sense. We
regard as an editor any application that presents a visual representation of an internal data
structure to a user and allows the user to modify this structure. The internal data structure
is referred to as thedocumentand the visual representation is thepresentation.

Obviously, word processors, image editors, and text editors are editors in this view, but
there are also some less obvious examples. Take, for example, the preferences pane that is
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Figure 1.1: Schematic representation of an editor.

part of most window-based applications. The check boxes, selection lists, and text fields
can be seen as a presentation of the preferences of the application. Another example of
an application that is not usually regarded as an editor is a file browser. (For a description
of a file browser as a text editor, see for example Fraser [28].)
Figure 1.1 contains a schematic representation of an editor. The main data structures
in the editor (also referred to aslevels) are the internaldocumenton the left that is not
visible to the user and the user-visiblepresentationon the right. The document should
not be confused with a file, which is a representation of the document that is stored on a
file system. Furthermore, we also do not consider an XML source to be a document, but
rather a textual presentation of the internal document.

A presentation, or view, is the only thing a user sees of the document. A presentation may
be textual, graphical, or a combination of both. We focus on static presentations only.
Hence, we do not explicitly consider presentations containing sounds or animations, un-
less presented statically (e.g. as a textual link to a sound or video file). In the presentation,
the editor shows the focus of attention, or, for brevity, justfocus, which is a shared name
for the selection as well the cursor (which is an empty selection). Several presentations of
a single document may be shown simultaneously by the editor, each having its own focus.
Finally, if a presentation closely mirrors the final physical appearance of the document
when it is printed, it is referred to as a WYSIWYG presentation (What You See Is What
You Get).

The relation between a document and its presentation is denoted by the termpresentation
relation, or presentation mapping. If, according to the presentation relation, the presen-
tation shown to the user is a presentation of the document, we say that thepresentation
invariant holds. Computing the presentation of a document is called thepresentation
process, whereas computing a document from a presentation is called theinterpretation
process. Together, the two processes implement the presentation relation and maintain
the presentation invariant if either side of the relation changes.
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A presentation isvalid if there exists a document, which, when presented, yields that
presentation. A presentation for which there is no corresponding document is invalid. An
invalid presentation may result from an editing the presentation level. Note the difference
with the term valid document, which denotes a document that is well typed.

The presentation relation for an editor may be (partially) specified in a style sheet, or
presentation sheet. A presentation sheet describes how elements of the document type
are to be presented, and is a parameter of the presentation process. By modifying the
sheet, a user may influence the appearance of the document without having to modify
the editor itself. A presentation sheet can be regarded as a parameter to the interpretation
process as well, since the interpretation depends on the presentation specified in the sheet.
Examples of style-sheet formalisms are the Cascading Style Sheets (CSS) [11] for HTML
as well as XML, and the Extensible Stylesheet Language (XSL) [1] for XML.

Generally speaking, editing consists of repeated interactive cycles of presenting and inter-
preting. The editor shows a presentation of the document together with the current focus
to the user. The user then provides the editor with anedit gesture, such as a key press or
a mouse movement, which is interpreted as an update on the document. The document is
then re-presented and shown to the user. The process is repeated until the user quits the
editor. Chapters 4 and 5 provide a more formal description of the editing process.

Document-oriented versus presentation-oriented editing

Because edit gestures may be targeted either at the document or the presentation, we
distinguish two kinds of editing:document-orientedversuspresentation-orientedediting.

On the one hand, we havedocument-oriented editing, which consists of edit operations
(including navigation and selection) that are targeted at the structure of the document
rather than at its presentation. Examples are swapping two chapters in a word processor,
selecting an entire chapter, or navigating to a next section.

On the other hand,presentation-orientedediting consists of edit operations on the pre-
sentation, which do not necessarily make sense at the document level. If a presentation
is textual, presentation-oriented editing amounts to freely editing the text. As an ex-
ample, take the mathematical expression(1 + 2) × (3 + 4). Deleting the middle part
(1 + 2)× ( 3 + 4) yields (1 + 3 + 4) and is a presentation-oriented edit operation that
does not directly correspond to a logical operation on the document level. Another ex-
ample is navigating downwards in a formatted paragraph of a word processor, since the
concept of lines in a paragraph only exists at the presentation level.

Section 3.5 provides a more thorough discussion of both document- and presentation-
oriented editing. Furthermore, the section discusses editing at several other levels, which
are introduced at the beginning of Chapter 3.

Different kinds of editors

The termstructure editoris used to make explicit that an editor has document-oriented
editing functionality (also including navigation). We do not make a sharp distinction
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between plain-text editing and structure editing. Instead, we regard all editing as structure
editing, but with a varying level of structure. A text editor can be seen as a structure editor
with a very simple structure model: a string or a list of strings. Document-oriented and
presentation-oriented editing coincide for a text editor.

An editor is ageneric editorif it is not specifically built for a single document type but
can be used to edit a whole class of document types. A generic editor may beinstanti-
ated to yield an editor for a specific document type. Genericity can be achieved with a
single generic editor that edits documents of arbitrary types, but also with an editor gen-
erator. Aneditor generatoris an environment that generates an editor application based
on descriptions of the document type and its presentation. Although a generator is not as
versatile as a single generic editor, we view both as generic editors.

For brevity, we will often adopt the common practice that the term structure editor implies
genericity as well. Still, structure editors that are not generic are quite common. A few
examples are: equation editors, bookmark editors in web browsers, and file browsers. On
the other hand, a generic editor is always a structure editor since it knows about the type
of the document.

In the context of generic editing, the termuseris ambiguous. A user can either be an editor
designer, who instantiates the generic editor for a specific domain, or a user who is editing
a document. Unless explicitly stated otherwise, we use the term for the document-editing
user.

Because it is difficult to give a precise definition of a generic structure editor and because
such a definition might be restrictive, we will discuss a number of typical use cases to
clarify what we mean by a generic structure editor. Section 2.1 presents these use cases.

1.1.4 Advantages of generic structure editors

An editor that knows about the structure of the edited document can offer interesting
functionality. We list several potential advantages of generic structure editors. The first
two advantages stem from the genericity of the editor, whereas the rest are mainly about
the structural (document-oriented) abilities.

Uniform user interface/edit model. Rather than a separate editor application for each
type of document, a single generic editor can be used for a range of document
types. Thus, instead of having to cope with several slightly different interfaces, a
user only needs to deal with a single uniform interface and edit model.

Integration of documents. Besides offering editors for different types of documents, a
structure editor also facilitates the integration of different types of documents into a
single editor instantiation. Thus, it is relatively easy to build an editor for a specific
document type, with advanced functionality for the different kinds of edit. Exam-
ples are a word-processing editor with spreadsheet functionality, or an editor for
slide shows that has syntax coloring and type checking for program code appearing
in the slides.
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Different Views on the Document. A structure editor may provide a user with several
editable views on the document. The views can show the document in a different
order, or with a varying amount of detail.

Graphical Views. A view may contain color and fonts in order to clarify document struc-
ture, but also use layout alignment, and graphical elements such as lines and boxes.

Derived Information in the Presentation. The editor can analyze the document during
editing and display information computed from the document structure. Examples
are the results of static analysis and type checking in source editors, but also chapter
numbers or an automatically generated table of contents.

Structural Edit Operations. Certain edit operations, such as demoting a section with
subsections to a subsection with subsubsections in a scientific article, are straight-
forward to specify at the structural level, but awkward at the presentation level.

Structural Navigation. Navigating over the document structure instead of its presenta-
tion can be very useful. In a source editor, when the focus is on an identifier, a
user may easily navigate to its definition in the source. Furthermore, an outline
view of the document can be shown in which a user can click to navigate to the
corresponding position in the document.

Integration with Other Tools. A structure editor allows fine control over integration
with other tools, such as spell checkers, program-transformation systems, and theo-
rem provers. Furthermore, the editor may show the results coming from these tools
at the appropriate position in the presentation, rather than as a list of messages with
line numbers.

For document types with a textual presentation, such as program sources or XML docu-
ments, some of the advantages can be simulated with a text editor. Lexical analysis can
be used on the edited text, and basic support for syntax coloring, auto-completion, and
navigation can be provided. However, although simple and efficient, these solutions are
very basic and prone to errors, because, in general, much of the structure of a document
cannot be recognized at a purely lexical level.

1.1.5 Classes of structure editors

Three classes of structure editors are distinguished in the literature:syntax-directed,
syntax-recognizing, andhybrideditors. Syntax-directed editors mainly support edit oper-
ations targeted at the document structure, whereas syntax-recognizing editors support edit
operations on the presentation of the document. A hybrid editor combines syntax-directed
with syntax-recognizing features, but the term is not used consistently.

Syntax-directed editors

The first structure editors that were developed are thesyntax-directed, or pure, structure
editors [6,54,77].



8 1 Introduction

presentation

user

document

Figure 1.2: A syntax-directed editor.

Early syntax-directed editors show a textual presentation of the document (usually a pro-
gram source) but exclusively offer edit operations targeted at the internal document struc-
ture, and not at the textual presentation. The original idea behind this was that if structural
edit operations are available, a user would not need the textual edit operations anymore.
Further, presentation-oriented edit operations would interfere with the user’s structural
model of the document and introduce errors. Hence they were prohibited altogether. Most
editors for XML (see also Section 2.3.4), as well as editors for preferences panes, can be
regarded as syntax-directed editors.

Figure 1.2 shows a schematic representation of a syntax-directed editor. The editor works
by computing a presentation of the internal document structure, which is shown to the user
together with a current focus of attention. The user provides an intended edit operation
(edit gesture) on the document structure, from which a document update is computed.
After the document is updated, a new presentation is computed, which is shown to the
user.

If the editor supports clicking in the presentation to set the focus, the editor also needs to
keep track of the origin in the document for each position in the presentation.

In the figure, the line between the user and the presentation is dotted because syntax-
directed editors do not support edit operations on the presentation very well. Because the
presentation is derived from the document, the editor needs to interpret the intended edit
operation on the presentation as an edit operation on the document, which is difficult if
the edit operation is not a logical operation on the document level.

A major problem with syntax-directed editors is the restrictiveness of the edit model
(e.g. [62, 88]). New structures are easy to create, but not as easy to modify. For ex-
ample, if a user wishes to change a while statement to an if statement, simply typing over
the keyword is typically not supported.

Many later syntax-directed editors offer a form of presentation-oriented editing by provid-
ing a freely editable textual presentation of (part of) the document, and applying a parser
to the edited text. Some publications [58, 86] refer to such editors as hybrid, but, as we
will explain below, we still regard these editors as syntax-directed editors.

Unless the two forms of editing are completely integrated, the textual presentation forces a
user to work in a different mode of editing, which is referred to asmode switching. Mode
switching does not solve the problem of restrictiveness adequately. Often, a separate
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user

document

Figure 1.3: A syntax-recognizing editor.

window showing a text-only presentation is opened and before the mode can be switched
back, the edited text has to be valid. Furthermore, separate modes require a user to be
constantly aware of the current mode of the editor. The resulting increased cognitive
burden has been shown to be a source of errors [79].

Syntax-recognizing editors

At the other end of the spectrum are thesyntax-recognizingstructure editors [7, 18]. A
syntax-recognizing editor keeps track of the textual presentation of the document. The
user can freely edit the text, and the editor tries to recognize the document structure by
means of a parser. Once the text has been (partially) recognized, structural information
(e.g. syntax-coloring or type information), navigation, and, in some editors, edit opera-
tions are available.

Figure 1.3 schematically shows a syntax-recognizing editor. The user’s edit operations are
targeted at the presentation, which can be edited freely. The document is derived by pars-
ing (interpreting) the presentation; hence the reversed direction of the arrow, compared to
Figure 1.2.

For each element in the document structure, the editor needs to keep track of what parts of
the presentation it corresponds to, in order to show structural information in the presen-
tation, as well as support structural navigation. When a document structure has been rec-
ognized, the presentation may show additional information using font and color changes,
context-sensitive menus, tooltips, etc.

Similar to the syntax-directed editor, the picture of the syntax-recognizing editor in Fig-
ure 1.3 also contains a dotted arrow. In this case, because the document is derived from
the presentation, structural edit operations on the document are difficult to support. A
document-oriented edit operation has to be mapped onto an update on the presentation, in
such a way that parsing the updated presentation returns the intended updated document.
Presentation information that is not stored in the document tree, such as whitespace and
comments, has to be related to the document tree in some way, in order to be put in the
right place after a structural edit operation.

The main problem with syntax-recognizing editors lies in their limited applicability. Be-
cause the presentation needs to contain enough information to derive the document, inter-
esting presentations that only show part of the document are hard to support. Furthermore,
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graphical presentations, as well as presentations containing computed values and struc-
tures, do not fit the model, as these are difficult to parse. As a result, syntax-recognizing
editors are mainly limited to text-oriented applications, such as program-source editors.

Hybrid editors

A hybrid editor supports structural as well as presentation-oriented edit operations. Fig-
ure 1.4 shows a hybrid editor. Because both levels can be edited, there are no dotted
arrows in the figure. However, in order to offer this edit functionality, the editor must re-
alize both the presentation and interpretation mappings. Hence the double arrow between
the document and the presentation.

In some publications (e.g. [58, 86]), the term hybrid is used to refer to syntax-directed
structure editors that have a limited form of syntax-recognizing functionality. As a con-
sequence, most syntax-directed editors would qualify as hybrid editors, because most
editors support some form of text parsing.

In contrast, other publications (e.g. [7, 49]) advocate that the term hybrid should be re-
served for editors that support full textual editing of the document, as well as limited
syntax-directed functionality, even if structural modifications on the document are not
supported. According to this view, almost all syntax-recognizing editors would classify
as hybrid editors, since most of these editors support a form of structural navigation.

Because of the confusion, and because most editors tend to be either primarily syntax-
directed or syntax-recognizing, we will often use those terms, instead of the term hybrid.

1.2 Proxima

The subject of this thesis is the design of the presentation-oriented structure editor Prox-
ima. Proxima is suitable for a wide range of applications, including word-processors
and source editors, but also mathematical-equation editors and spreadsheets. An impor-
tant aspect of Proxima is that the editor fully supports presentation-oriented as well as
document-oriented editing. Thus, the editor classifies as a hybrid structure editor.

The implementation of the bidirectional mappings between the document and the pre-
sentation is facilitated by a layered architecture. The computation of the presentation is
broken up in several stages, and each intermediate value in this computation corresponds
to adata level(or justlevel). The interpretation process has the same intermediate values.
Between two levels, there is alayer, which is a component that takes care of mapping
values at one level onto values at another level, and thus implements a single stage of the
presentation and interpretation processes.

The first step of the presentation process is that thedocumentis enriched with computed
values and structures, by the evaluator. The resultingenriched documentis mapped onto a
logicalpresentationin which positions and sizes are specified relatively. The layout layer
adds whitespace that is not stored in the document to the presentation, yielding thelayout
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Figure 1.4: A hybrid editor.
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Figure 1.5: Proxima.

level. The layout level is mapped onto anarrangementlevel, which contains absolute
positions and sizes. And finally, the renderer maps the arrangement onto arendering,
which is made visible to the user. A more detailed discussion of the presentation and
interpretation processes is provided in Chapter 3.

Figure 1.5 shows the levels and layers of Proxima. Because the namepresentationis
reserved for one of the intermediate levels, the lowest level is referred to, more appropri-
ately, as therenderinglevel. The figure shows multiple edit arrows coming from the user,
because edit operations may be targeted at intermediate levels as well.

The layered architecture makes it possible to combine presentation-oriented editing with a
powerful document-presentation mechanism that includes support for derived values and
structures. A platform-independent Haskell prototype of Proxima has been implemented,
and experiments with instantiated editors have yielded promising results.

1.3 Terminology

We give a brief summary of the terms that were introduced in the previous sections.

Editor: Application for creating and modifying documents. In this thesis, the term also
used to refer to structure editors and generic editors (or generic structure editors).

Document: Internal data structure that represents the information that is edited.

Presentation: Term for a visible representation of the document (also called aView), as
well as for one of the intermediate levels of the presentation process.
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Presentation mapping/relation: The relation between the document and its presenta-
tion.

Presentation-oriented editing: Edit operation targeted at the presentation:
e.g. deleting “+ ” from “ 1 + 2”, yielding “12”.

Document-oriented editing/Structure editing: Edit operation targeted at the document:
e.g. swapping two sections in an article.

Presentation sheet:Parameter to the presentation/interpretation process.

Presentation process:Process of computing the presentation of a document.

Interpretation process: Process of computing a document from a presentation.

Level: Intermediate value of the presentation/interpretation process, including the docu-
ment and the presentation.

Layer: Component that realizes the presentation and interpretation mappings between
two levels.

Structure editor: An editor that has knowledge of the structure of the edited document.
Usually assumed to be ageneric editoras well.

Generic editor: A structure editor suitable for editing documents of different types.

Syntax-directed editor: An editor that primarily supports document-oriented editing.

Syntax-recognizing editor: An editor that primarily supports presentation-oriented edit-
ing.

Valid document: A well-typed document, mainly used in the context of XML.

Valid presentation: A presentation that is the result of presenting some document.

Focus: Shared name for cursor and selection.

1.4 Outline of the thesis

The remainder of this thesis has the following structure:

Chapter 2 explores applications of generic structure editing by providing five use cases
of real-world editors. With these use cases in mind, we formulate a number of functional
requirements that in our view are important for a flexible non-restrictive structure editor.
We evaluate a number of existing editors according to the requirements, and conclude
with an overview of how the Proxima editor is designed to meet the requirements and be
able handle all use cases.

The layered architecture of Proxima is introduced in Chapter 3. The chapter discusses
the various data levels, as well as the layers that maintain the mappings between the
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levels. The discussion is illustrated with examples of the presentation and interpretation
processes.

In chapters 4 and 5, we develop a specification of the Proxima editor. Chapter 4 serves
as an introduction to the specification and introduces our model of the edit process, as
well as the concepts of extra state and duplicates in the presentation. In Chapter 5, we
start by specifying a simple editor, to which extra state and multiple layers are added
in subsequent sections. The chapter ends with an informal discussion on how to handle
presentations that contain duplicates.

In Chapter 6, we discuss theXPREZ presentation formalism of the Proxima.XPREZ is
a declarative presentation language, suited for specifying a wide range of presentations.
We state a number of requirements for a presentation language for structured documents,
and provide an informal overview ofXPREZ, using a series of examples.

A prototype that offers much of the functionality discussed in this thesis has been imple-
mented in the functional language Haskell. Chapter 7 discusses the prototype as well as
a number of editors that have been instantiated. The chapter also explains which compo-
nents need to be provided to instantiate an editor.

Finally, Chapter 8 presents the conclusions and gives an overview of future research.





Chapter 2

Requirements for a structure
editor

In this chapter, we present five use cases of possible applications for a generic structure
editor. The use cases will shed more light on the definition of the term editor from the
previous chapter, and provide standard examples to explain and define edit behavior in
the coming chapters. A design requirement of Proxima is that the editor is able to handle
all five use cases.

Section 2.1 presents the five use cases, from which we formulate a set of functional re-
quirements for a flexible non-restrictive structure editor, in Section 2.2. Existing editors
are evaluated according to these requirements in sections 2.3 and 2.4, showing why none
of these editors can handle all use cases. Finally, in Section 2.5 we discuss how the Prox-
ima editor meets the requirements and thus will be able to implement all of the use cases.

2.1 Use cases

Some of the five example editors, presented in this section, are well-known applications
of structure editors, but a few more exotic applications have been included as well. None
of the current generic structure editors can handle all five use cases. It is important to note
that although the use cases are discussed as separate applications, aspects of them can be
combined in a single editor instance. The discussion of the edit behavior is illustrated
with fictitious screenshots. Actual screenshots of the Proxima prototype can be found in
Chapter 7.

15
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2.1.1 A source editor for Haskell

As an example of a program-source editor, we take an editor for the functional program-
ming language Haskell [70]. The editor supports an extended form of syntax highlighting,
in-place display of syntactic and semantic errors, and a range of language-specific edit op-
erations.

There exists evidence showing that syntax highlighting makes programs more readable [5,
68]. Our editor supports highlighting at a semantic rather than syntactic level. Hence,
unlike most text editors, the editor can use different display styles for language constructs
that are hard to recognize purely syntactically. The type declarations in the next screenshot
are an example of such a construct. Although syntactically identical, identifiers in type
expressions are colored differently from identifiers in ordinary expressions.

Haskell editor

File Edit View Help

module Main where

s :: (a ® b ® c) ® (a ® b) ® a ® c

s = lf ® lg ® lx ® f x (g x);

maybe :: a ® (b ® a) ® Maybe b ® a

maybe n j m = case m of

Nothing ® n

Just x ® j x

f :: a ® b ® c

g :: a ® b

s :: (a ® b ® c) ® (a ® b) a ® c

The Haskell source editor.

Haskell is a particularly interesting language for a source editor because, due to Haskell’s
rich type system, information about types is very useful during programming. Haskell
programmers often experience that once type errors have been removed, a function is cor-
rect. Therefore, an environment that supports in-place display of type errors, as well as
easy access to type information of variables in scope, will help rapid program develop-
ment.

The upper pane of the editor in the screenshot shows a highlighted source of a simple
Haskell module. The bottom pane shows the automatically derived types for identifiers
that are in scope at the focused position, including the types of locally declared identi-
fiers. A mouse click on an identifier in the list changes the focus to the definition of that
identifier in the source pane.

Automatic layout/pretty printing

Some structure editors use an automatic layout scheme while editing program sources.
The user then does not need to worry about layout issues, such as the alignment of pa-
rameters in functions with multiple clauses. However, for a Haskell editor this situation
is not optimal because Haskell programs mainly consist of expressions, which are hard
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to layout automatically. Therefore, rather than having automatic layout be continuously
performed on the entire source, a user may request the editor to automatically lay out a
selected part of the program. The specification of the layout of the program is part of a
presentation sheet and may be adapted by the user. Of course, if desired, it is also possible
to turn on continuous automatic layout.

tails :: [a] -> [[a]]
tails [] = [[]]
tails xxs@( :xs) = xxs:tails xs

prefix :: (Eq a) => [a] -> [a] -> Bool
prefix [] = True
prefix [] = False
prefix (x:xs) (y:ys) = if x == y then

prefix xs ys else False

suffix :: (Eq a) => [a] -> [a] -> Bool
suffix x y = reverse x ‘prefix‘ reverse y

tails :: [a] -> [[a]]
tails [] = [[]]
tails xxs@( :xs) = xxs:tails xs

prefix :: (Eq a) => [a] -> [a] -> Bool
prefix [] = True
prefix [] = False
prefix (x:xs) (y:ys) = if x == y

then prefix xs ys
else False

suffix :: (Eq a) => [a] -> [a] -> Bool
suffix x y = reverse x ‘prefix‘ reverse y

⇒

apply layout

The screenshot shows the automatic-layout operation applied to the selected function
prefix. The formatted function on the right-hand side is still freely editable, includ-
ing its whitespace.

Structural edit operations

Because a program construct is represented by a contiguous area in the presentation, mov-
ing a program construct can usually be done in a straightforward way by moving its pre-
sentation. However, this is not always the case. Take, for example, the expression:

let x=1; y=2 in x+y

The expression consists of a list of declarations that are separated by semicolons and
whitespace. Contrary to, for example, the language Java, the semicolon in Haskell acts as
a separator, and not as a terminator. Unlike a terminator, which can be regarded as part
of the presentation of a declaration, a separator belongs to the presentation of the list of
declarations. As a result, semicolons may cause problems when declarations are moved.

Consider moving the first declarationx = 1 to the end of the let expression. When the
declaration is cut, the semicolon behind it must be deleted, and when the declaration is
pasted, a semicolon with appropriate whitespace must be added. Similar issues apply to
all list structures that are presented using separators, such as Haskell lists[1, 2, 3],
tuples(1,2,3), or monadicdo expressions:do {a <- getChar ; putStr [a]}.

If the structure of the edited list is taken into account, cut-and-paste on lists with separators
can be handled elegantly. When the first declaration is selected, the editor recognizes it as
an element of the let expression’s declaration list, and when it is cut, the semicolon next
to it disappears:
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let x=1 ; y=2 in x+y ⇒ let y=2 in x+y ⇒ let y=2 in x+y ⇒ let y=2; x=1 in x+y

cut move focus paste

When the declaration is pasted, a semicolon is automatically placed in front of it. The
whitespace from the semicolon is copied from the whitespace of the other semicolons in
the presentation (or may come from a pretty-printing algorithm). If the list has an irregular
layout (e.g.[1, 2, 3, 4]), the layout after the paste operation may not be what is
expected. However, since list structures are usually layed out in a regular way, this need
not be a problem.

If an edit operation can be performed both structurally as well as presentation-oriented,
as is the case here, the editor gives preference to the structural edit operation. In order to
perform the cut and paste operations from the example on the presentation (and thus leave
the semicolon untouched), a modifier key may be pressed.

Rename within scope

A second example of an edit operation that takes the document structure into account is
a rename operation on an identifier. In a regular text editor, occurrences of the identifier
name need to be changed using search and replace. However, automatic search and re-
place does not always lead to the desired result because the identifier may be redeclared
in inner scopes, or the identifier name may appear in a string.

f a b = a + let a = 10 in a ⇒ f x b = x + let a = 10 in a

rename variable

The rename operation takes account of the scoping rules of Haskell, and only changes the
appearances that lie in scope of the updated identifier. If the new name is captured by
an inner declaration, or if it shadows an identifier that is already declared, a warning is
issued.

The rename operation is an example of arefactoringoperation: a source-to-source pro-
gram transformation that leaves the functionality of the program intact. The designers of
the Haskell Refactorer [52] identify a number of such transformations.

Hide function definitions/folding

Function definitions in the source presentation may be collapsed, leaving only one left-
hand side and the (possibly inferred) type declaration. This operation is often referred to
as folding.
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yA (ColA x y w h ) = y
yA (OverlayA x y w h ) = y

widthA :: Arrangement → Int
widthA (StringA x y w h ) = w
widthA (ImageA x y w h ) = w
widthA (PolyA x y w h ) = w
widthA (RowA x y w h ) = w
widthA (ColA x y w h ) = w
widthA (OverlayA x y w h ) = w

heightA :: Arrangement → Int
heightA (StringA x y w h ) = h

yA (ColA x y w h ) = y
yA (OverlayA x y w h ) = y

widthA :: Arrangement → Int

widthA = ...

heightA :: Arrangement → Int
heightA (StringA x y w h ) = h
heightA (ImageA x y w h ) = h
heightA (PolyA x y w h ) = h
heightA (RowA x y w h ) = h
heightA (ColA x y w h ) = h
heightA (OverlayA x y w h ) = h

⇒

hide function definition

The two functionswidthA andheightA have a large number of clauses. Hiding these
clauses may improve the readability of the source. After applying thehide function body
edit operation to the functionwidthA, only one clause remains with a collapsed right-
hand side (... ). The function is expanded again by clicking on the dots. A collapsed
function may be renamed, deleted, or structurally moved around in the source. Editing
the whitespace around the ‘=’ sign would be ambiguous because of the hidden parameters
names and the fact that a single collapsed function typically represents several clauses.
Hence, editing this whitespace is not allowed.

Requirements

The source editor generates a number of requirements, an important one being the possi-
bility of freely editing the textual program source, including the layout. At the same time,
it must be possible to let the layout be computed automatically as well. Furthermore,
a formalism for specifying computations over the document is required for performing
static analysis and type checking.

Freely editing the program source is not always regarded a requirement for a structure
editor. Purists argue that text editing may introduce syntactic errors, and that it is not
necessary for programming (e.g. [54,86]). However, no clear consensus has been reached
on the subject (e.g. [93] and reactions [66, 80], and [88]) and nowadays most syntax-
directed editors support some form of free text editing. Furthermore, because up to now
no pure syntax-directed editor has ever become popular with programmers, we believe
that free textual editing is an essential requirement for a program-source editor.

2.1.2 A word processor

This section describes a WYSIWYG document editor with a user interface similar to
word-processing applications such as Microsoft Word, but with a document model similar
to the XML/SGML DocBook standard [92] and an output quality similar to TEX [47].
Examples of editors with similar functionality are TeXmacs [63] and Lyx [25], but neither
system is generic.
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Proxima
Martijn M. Schrage

Contents

1 Editing structured documents
2 Use cases
3 Functional requirements

1 Editing structured documents

While the termeditor is usually only associated with plain-text editors
such as Emacs [81] orthe ubiquitous Microsoft Notepad, we will

The word processor.

The document model consists of chapters, sections and subsections. The editor supports
free editing in the WYSIWYG presentation with optimal line breaking, a derived table of
contents, and an automatic bibliography. Cross-references, such as citations or references
to figures, can be clicked to bring the referred part of the document into focus.

Structural view on the document

Although Microsoft Word is one of the most popular word-processing tools in the world,
an often-heard complaint concerns its confusing document model. Sometimes edit op-
erations are not allowed because of underlying document structure, but it is not obvious
why this is the case. Furthermore, the reason why a document fragment looks the way
it does is not always clear. The user may have set specific style attributes for a particu-
lar fragment, or the style may originate from the document’s presentation rules. A more
structural view on the document, such as WordPerfect’s “underwater” screen, can help to
clarify the situation, but is not supported by Word. Such a structural view is easily defined
in a structure editor:

normal textitalic and bold just italic normal
text againplus a warning.

⇒ normal text〈e〉〈b〉italic and bold〈/b〉 just
italic〈/e〉 normal text again〈Warning〉plus a
warning〈/Warning〉.

switch to structural presentation

The two screenshots show two presentations of the same document fragment. The left-
hand presentation is the regular WYSIWYG presentation, whereas the right-hand one is
a more structural presentation that shows the markup tags. The example document also
contains a fictitious<Warning> element that is presented in a bold and italic style. Only
in the structural presentation can the warning be distinguished from text that has been
explicitly formatted as bold and italic.

The structural view is also helpful for positioning the focus. In the left-hand presentation
it is not clear whether the focus is in the regular text, the italic part, or the part that is both
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italic and bold. The right-hand presentation, on the other hand, shows the exact position
of the focus in the italic part. In order for the structural views to be helpful, the editor
supports easy switching between views while preserving the current focus.

Structural edit operations

Edit operations that rearrange the document structure, such as promoting a subsection
to section, are awkward to perform on a textually represented document, such as a TEX
source. All tags or TEX commands that specify the subsection and its descendants need to
be changed. This is a rather specific search/replace operation on only part of the document
source, which is a hassle to automate.

A structure editor may be of some help here, because the structural similarities between
sections and subsections are known to the editor and can be used to define edit operations
for restructuring the document.

Contents
1 Editing structured documents
1.1 Classes of structure editors
1.2 Advantages of structure editors
1.3 Use cases
1.3.1 A source editor for Haskell

2 Functional requirements

⇒

Contents
1 Editing structured documents
1.1 Classes of structure editors
1.2 Advantages of structure editors

2 Use cases
2.1 A source editor for Haskell

3 Functional requirements

change to section

The screenshot shows the effect of the structural edit operation “change to section”. If the
containing section (“Editing structured documents”) had had any subsections following
the promoted subsection, these could have become subsections of the new “Use cases”
section. However, different behavior for such sections may be specified by the user in a
preferences window for the edit operation.

An operation that changes the level of a section or subsection is rather complex because
it involves splitting and changing elements. Moreover, there are special cases to consider.
For example, if a subsubsection is the deepest possible structural level, a warning needs to
be issued when a section containing a subsubsection is demoted to subsection. Therefore,
such an operation needs to be specified explicitly by the editor designer or user. Other
document operations, however, such as splitting and joining elements of a list, may be
derived automatically.

Editing a section title in the table of contents

The word processor has support for the specification of a generated table of contents.
From an entry in the table, a user can jump to the corresponding position in the document
presentation. The presentation of the table of contents itself can be customized to match
the style of the rest of the presentation. When the document is edited, the table of contents
is updated accordingly. Moreover, editing an entry in the table of contents causes an
update to the title of the corresponding chapter or section.
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⇒

enter “The u”

The screenshot shows a document with a table of contents. The second entry in the table of
contents is edited by entering the text “The u” over the selected letter ‘U’ at the beginning
of the title. The result is that the title in the table of contents as well as the title in the
section is updated.

Moving a section in the table of contents

Besides textual edit operations, it is also possible to perform structural edit operations on
derived structures. The screenshot shows a move operation on a section title in the table
of contents, which has the result that the corresponding section is moved in the document.
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1 Use cases
In this section, we present five use cases of possible applications for a
generic structure editor. The use cases will shed more light on the defini-

2 Editing structured documents
While the termeditor is usually only associated with plain-text editors
such as Emacs [81] or the ubiquitous Microsoft Notepad, we will use the

⇒

move section entry

The section entry for the “Editing structured documents” section is selected and dragged
to its new location, just below the entry for the “Use cases” section. The result is an edit
operation on the document structure that puts the first section after the second section.
The section numbers switch because they are generated automatically. Whenever an edit
operation on a derived structure is performed, the user may be signaled that the operation
affects more than just the visible selection.

Although structure-changing operations on derived structures may not always make sense,
it is important that they can be specified for the cases in which they do.

Requirements

Compared to the source editor, the word processor requires a more powerful presentation
formalism. Besides text in different fonts, sizes, and colors, the presentation also contains
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images and basic graphical elements. Furthermore, support for optimal line and page
breaking is needed for formatting paragraphs and pages.

Finally, in order to handle edit operations on the table of contents, the editor must support
editing not only on presentation and document level, but also on the level of derived
structures.

2.1.3 Equation editor/MathML

Because mathematical formulas have a high degree of structure, a mathematical equation
editor is a good candidate for structure editing. Equation editing functionality is typically
integrated with a word processor to support in-place editing of equations in a document.
An example of an editor for mathematical documents is the MathSpad editor [89], which
offers word-processing functionality as well. MathSpad also supports a form of gener-
icity, but does not allow the document type to be specified. Furthermore, both the edit
model and the presentation have a tendency towards documents of a mathematical nature.

U(~x1,~x2, t) = − ~2

R(~x1,~x2, t)

(
∇2

1R(~x1,~x2, t)
2m1

+
∇2

2

2m2

)

The equation editor.

The screenshot shows a WYSIWYG equation editor with support for mathematical con-
structs such as fractions, roots, and integrals. A possible document type for the equation
editor is the Mathematical Markup Language MathML [20].

Mathematical formulas are suitable for document-oriented edit operations, using menus
and buttons for structure entry. Free presentation-oriented editing, on the other hand, is
not as clearly defined on a formula as it is on a program source. For example, shrinking
the 2 in the number 42 and moving it upwards a bit, could theoretically lead to recognition
of the square42. However, this requires a complicated visual parsing scheme, the exact
behavior of which is not clear. Therefore, the editor only allows free editing in the textual
parts of a formula that can be parsed unambiguously.

Although such a rather restricted edit model is common even in the current generation of
non-generic equation editors, we believe that a more sophisticated and flexible edit model
is possible. The Proxima architecture does not prohibit such an edit model, but further
research on parsing two-dimensional structures is required before it can be supported.

Drag and drop

Direct manipulation of parts of the formula is supported on a structural level. A proper
subtree of the formula can be dragged to a different location.



24 2 Requirements for a structure editor

(x−1)× (x + 1)
y+{Exp} ⇒ (x−1)×{Exp}

y+ x + 1

movex + 1

The subformulax+1 is dragged to its new location below the fraction bar, leaving a place-
holder{Exp} at its origin. Note that the parentheses disappear because the+ operator is
associative.

Only proper subtrees in the document may be selected in the equation editor. This means
that in the formula234

, the23 part may not be selected because it is not a proper subtree
(the power operator associates to the right).

In practice, we do not expect this restriction to be a major problem. A fragment of the
presentation that does not correspond to a proper subtree does not actually represent a
meaningful expression. Hence, the chance that the fragment is reused elsewhere or needs
to be moved is small. An unlikely situation in which this might occur is when a user needs
to build an expression that by chance has exactly the same presentation as some already
present non-subtree selection.

Textual structure entry/parser

For quick and easy structure entry, the editor supports textual entry of mathematical struc-
tures without having to switch to a different mode.

anbn = 4θab
4π = −1 + 2θab

π ⇒ anbn = 4θab−4(π−θab)
4π = −1 + 2θab

π

enter “-4(\pi-\theta {ab})”

The entered text is parsed and causes the insertion of−4(π− θab), as shown on the right.
It should be noted, however, that textual entry does not always lead to the desired result in
a two-dimensional presentation. For example, when ”2/4” is entered, an intuitive result
is the insertion of a fraction with the focus ending up below the fraction line to the right of
the 4, yielding 2

4| . But now the expected result of entering ”+6” would be 2
4+6| , whereas

the correct meaning of ”2/4+6” is 2
4 + 6.

If a complex subformula needs to be entered, or if the appearance of a formula needs to be
fine tuned, the user may temporarily switch to a more structural presentation. This may
be considered a mode switch, but since the structural presentation is in the same window
as the graphical presentation and may be switched back at any time, it does not restrict
the user.

Domain-specific transformations

Because the editor has knowledge about the exact structure of a document, rather than
just about the structure of the presentation, it is possible to specify domain-specific math-
ematical transformations.
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x = a× (b + c) ⇒ x = a× b + a× c

distribute

The example shows the application of a distribution transformation to the selected sub-
formula. Similar transformations, such as factorize or reverse, may be specified by the
editor designer or the editor user. Furthermore, instead of updating the expression in-
place, the editor may also insert the transformed expression below the original. This way,
the editor can be used to construct derivations or proofs semi-automatically (or indeed
fully automatically, if the editor is connected to a theorem prover).

Requirements

Presenting mathematics puts a heavy demand on the presentation formalism. Fine control
over automatic alignment and resizing of presentation elements is needed for complex
presentations such as integrals, square roots and fractions.

Editing mathematics requires basic document-oriented edit support (copy and paste), as
well as drag and drop editing. Structure entry is also typically a document-oriented edit
operation, because many expression structures, such as a quotient, a power expression, or
a square root, have no presentation that can easily be entered with conventional editing
methods.

Because parts of an expression may be missing during its construction, the editor must
be able to handle incomplete documents. Furthermore, for supporting domain-specific
transformations, a formalism for specifying document-oriented edit operations is needed.
Presentation-oriented editing on mathematical formulas is desirable, but is not a strict
requirement, because of its still unclear nature.

2.1.4 Non-primitive outline view/tree browser

An outline view, or tree browser, is a hierarchical view on tree structures. It is found in the
Java Swing GUI library and also forms the main navigation tool in Microsoft’s Windows
Explorer application.

Some editors, especially XML editors, provide tree-browser views on the document, but
in almost all editors, the view is hard-coded. If an editor is sufficiently powerful to express
a tree-browser view without resorting to a primitive tree-browser widget, this offers many
possibilities for integrating the tree view with other views on the document.

Tree views are useful for giving an overview of large structures, such as a program source
that consists of a number of different modules. By combining a tree presentation with a
source editor, we can support the kind of project management that is found in integrated
development environments, such as JBuilder or Eclipse [67].
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Haskell editor

File Edit View Help

module Presentation.XprezLib where

import Common.Types

import Presentation.Types

beside :: Xprez ® Xprez ® Xprez

left `beside` right = row [left, right]

above :: Xprez ® Xprez ® Xprez

hghr `above` lwr = col [hghr, lwr]

hLine :: Xprez

hLine = poly [(0,0),(1,0)] `withHeight` 1

vLine :: Xprez

vLine = poly [(0,0),(0,1)] `withWidth` 1

A source editor with a tree-browser pane.

The window in the screenshot consists of two panes, the right-hand pane contains a
Haskell source editor and the left-hand pane contains a tree view of the module struc-
ture of the edited program. When the user clicks on a name in the left-hand pane, the
corresponding module is shown in the right-hand pane.

Drag and drop

The tree browser supports drag and drop edit behavior that allows nodes in the tree to be
dragged to new locations.

⇒

move “citrus” node

The screenshot shows the effect of dragging the node with label “citrus” to a new posi-
tion immediately below “fruit”. The operation results in a structural document change
in which the element with presentation “citrus” becomes the first child of the element
that has presentation “fruit”.

In this example, the elements of the tree all have the same type and can therefore be moved
anywhere in the structure. Using the tree view for outline editing in the word-processor
example is slightly more complex, because a move operation may require a transformation
of the element moved. For example, when a subsection is moved immediately under a
chapter element, it must be changed to a section.



2.1 Use cases 27

Customized tree views

Because the tree presentation is not primitive, the editor designer or user can customize
it, or even define entirely different tree presentations.

An alternative tree-browser view.

The tree view in the screenshot is a more spacious presentation, in which the child nodes
are presented to the right of the parent rather than below.

Requirements

Similar to the equation editor, the tree browser has a two-dimensional graphical presenta-
tion that requires fine control over the alignment of the presentation elements. Customiz-
ability of the tree view requires that the presentation specifications are transparent and
reusable.

Edit operations on the tree structure are similar to edit operations on the table of contents
in the word-processing example, because the tree is typically a derived structure that
follows the structure of the document (or part of it). Updates on the tree need to be
mapped on updates on the document itself. Navigation operations can be considered an
update on the focus and hence the specification formalism for document-oriented edit
operations must support focus updates.

An aspect that is specific to the tree browser is that it has a notion of state. Each node in the
tree view is either collapsed or expanded, and this information must be stored somewhere.
Such presentation state, orpresentation extra state, as we call it, does not form part of the
document, because if it is stored there, the document type will need to be changed if a tree
view is added to the presentation. The fact that this state is not part of the document, but
rather of the presentation of the document, makes it hard to model in a structure editor.
A mapping between the document and the presentation state needs to be maintained to
associate a document node with its expansion state, even when the document is edited
and its nodes are reordered.

2.1.5 Simple tax form/spreadsheet

The last example is a simple tax-form application, which is basically a spreadsheet with
a rather specialized presentation. It contains questions and explanatory text, mixed with
input fields and fields that contain derived information.
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Tax form

2Number of jobs

PhD Student 10.00 2.501

Nr. Description Salary Tax withheld

Programmer 20.00 6.002

Tax due: (35% of income - paid) 2.00

Total income: 30.00

Tax paid: 8.50

File Edit View Help

A much simplified tax form.

The tax-form editor has two different kinds of users: a user who designs the tax form, and
a user who fills out the form. Both users use the same document type, albeit with different
presentations. The form designer uses a presentation that shows the building blocks and
structure of the form, as well as the formulas for the derived values. On the other hand, the
user who fills out the form sees the input fields, the derived values, and the accompanying
fragments of text. The structure of the form and the formulas for the derived values are
not explicitly visible and cannot be modified in this presentation.

The distinction between the two kinds of users differs from the distinction in Section 1.1.3
between editor designer users and document editing users, because for the tax form, both
users edit the document and therefore are document editing users rather than editor de-
signers.

A difference between the tax form and the previous use cases is that, similar to a spread-
sheet, it has computations that are specified in the document itself. Hence, these compu-
tations can be modified by an editing user, rather than the editor designer. Although this is
probably not how an actual tax-form application would be designed, we use the presence
of computations in the document as an example of spreadsheet behavior in a structure
editor.

Presentation depending on document values

In most presentations, the structure of the presentation depends on the document structure.
However, the presentation structure may also depend on a document value, rather than the
structure. An example is the following section of the tax form:
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Tax form

2Number of jobs

PhD Student 10.00 2.501

Nr. Description Salary Tax withheld

Programmer 20.00 6.002

Tax due: (35% of income - paid) 2.00

Total income: 30.00

Tax paid: 8.50

File Edit View Help

⇒

Tax form

3Number of jobs

PhD Student 10.00 2.501

Nr. Description Salary Tax withheld

Programmer 20.00 6.002

0.00 0.003

Total income: 30.00

Tax paid: 8.50

Tax due: (35% of income - paid) 2.00

File Edit View Help

increase number of jobs

The number of input fields for job information depends on the number of jobs. When
the number is increased, the structure of the input form changes accordingly, showing an
extra line of input fields. Decreasing the number hides the corresponding input fields, but
after a subsequent increase, the fields reappear containing their previous values.

The tax-man view

A different presentation of the tax form allows a user to design the form by editing the
structure of the form, rather than the values of its input fields.

Tax form

2

PhD Studentinput: (ds[0])

Tax due: (35% of income - paid) 2.000.35*in-taxderived: restext:

text: Tax paid:

text: Total income: 30.00sum jobs.ssderived: in

8.50sum jobs.tsderived: tax

text: Number of jobs special: jobs.length

10.00input: (ss[0]) 2.50input: (ts[0])1derived:

Programmerinput: (ds[1]) 20.00input: (ss[1]) 6.00input: (ts[1])2derived:

File Edit View Help

input: ds.ix+1derived: input: ss input: tslist: jobs

text: Nr. text: Description text: Salary text: Tax withheld

The tax form for the tax man.

The screenshot gives an impression of a presentation in which the tax-form structure and
layout are editable. The tax-form document is the same as for the first screenshot. Text
blocks, as well as input fields and derived value fields can be inserted or deleted, and the
computations for the derived values (“.ix+1”, “ sum jobs.ss”, “ sum jobs.ts”, and
“0.35*in-tax”) can be modified. The input values of the input fields are still editable to
allow for easy testing of the specified computations.
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Requirements

In contrast to the other use cases, the tax-form presentation is rather similar to a user
interface. Instead of just text and graphical elements, it contains widgets, such as check
boxes, selection lists, and input fields, with the corresponding edit behavior.

The tax form also features computations with results that appear explicitly in the presen-
tation itself. Unlike the type computations in the Haskell editor, the computations in the
tax form are part of the document, and may be specified by an editing user (the tax man),
rather than an editor designer. Therefore, similar to a spreadsheet application, the edi-
tor needs to dynamically interpret document structures that represent computations and
display the results in the presentation.

2.2 Functional requirements

With the use cases of the previous section in mind, we now provide a number of functional
requirements for a generic structure editor.

2.2.1 Genericity

The primary requirement for the editor is genericity: the editor must be generic in the
sense that it is not built for a specific document type or class of document types. How-
ever, as mentioned in Section 1.1.1, we restrict ourselves to trees rather than graphs. Most
documents can be represented by trees, including our five use cases. A formalism for
specifying cross-links between tree nodes is desirable, but full graph editing is not a re-
quirement.

2.2.2 Computation formalism

An interesting aspect of an editor that has knowledge of the structure of the document, is
that it can show derived values over that structure to the user. Examples of derived values
are chapter numbers and a derived table of contents, but also derived type information for
a program source. An important point is that the computations we refer to are part of the
presentation process. Based on values in the document, the derived value is computed,
but the document itself is not affected. This is different from computations that map the
document onto a new document containing derived values. The latter kind also allows
computed values to be shown to the user, but in the process causes an update to the
document. Hence, we view such computations as document-oriented edit operations,
which are covered by theediting powerrequirement, discussed in Section 2.2.4.

Two aspects influence the usefulness of the computations: the expressivity of the formal-
ism in which the computations are specified, and the integration of computed values and
structures with the document presentation.
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For program editing as well as the tax form, the expressivity of the computation formal-
ism is important. Computations can provide static analysis, e.g. detecting name clashes
and scoping problems, as well as a type derivation. In order to be able to specify these
computations for arbitrary languages, a Turing-complete formalism, such as an attribute
grammar [85], is desirable. Other options include constraint-based systems [7, 9, 30, 61]
and tree transformation formalisms [21, 90]. Furthermore, the computation formalism
should offer functionality for connecting to external tools, such as a compiler or a theo-
rem prover.

For the word-processing example, as well as the tax form, the integration of computed
values with the document presentation is important. Whereas type errors may be shown
in separate windows or by underlining the location and showing the message in a tooltip,
chapter numbers and a table of contents form an actual part of the presentation.

2.2.3 Presentation formalism

The presentation formalism has two different aspects, which we consider together here.
One is the formalism in which the building blocks of the presentation are expressed (the
presentation target language), whereas the other (thepresentation specification language)
is the formalism in which it is specified how a document is mapped onto an element of the
presentation target language. For XML, a well-known presentation language is the Exten-
sible Stylesheet Language (XSL) [1]. XSL is split into the mapping language XSLT [21]
and the target language XSL Formatting Objects. Chapter 6 discusses presentation lan-
guages in more detail.

In many editors thepresentation target languageconsists of just plain text, sometimes
with color and font attributes. However, in order to support the graphical presentations
of the equation editor and outline view use cases, a more advanced target formalism is
required. It must be possible to specify graphical elements such as lines and boxes, as
well as to show images. Furthermore, the presentation of a mathematical formula requires
an advanced alignment model that offers full control over the positioning of presentation
elements.

Another requirement for the presentation target language comes from the tax-form ex-
ample. The tax form typically contains user-interface widgets, such as buttons, selection
lists, and menus. Therefore, the target language must support user-interface widgets.

Finally, the word-processor use case requires that the presentation target language sup-
ports line and page breaking, preferably optimal [48].

Thepresentation specification languagehas to allow the specification of complex graph-
ical presentations using compact readable style sheets. It must be possible to specify
simple presentations in an easy way, while still allowing the specification of more com-
plex presentations. For the exact choice of formalism we have similar options as for the
computation formalism, including AGs, constraint-based systems, and tree transforma-
tion formalisms.
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Although a presentation can be seen as a computed value, we make a separation between
the presentation specification language and the computation formalism. One of the rea-
sons is that the separation of computation and presentation makes it possible to specify
multiple presentations of a document together with its computed values. Furthermore, the
separation makes it easier to support edit operations on derived structures.

2.2.4 Editing power

The editing power of an editor is determined by the fact whether both document- and
presentation-oriented editing is supported, together with the complexity of the edit oper-
ations and to what extent these operations are user-specifiable.

The equation editor as well as the outline editor rely heavily on document-oriented edit-
ing. Document-oriented edit operations typically include basic copy, paste, and delete
operations, as well as selection and navigation operations.

Because a document is not always well typed while it is being constructed, the editor
should support incomplete document structures, for example by allowing placeholders
to appear in the document tree. Besides incomplete documents, it is desirable to have
support for invalid documents in general. However, because it can be difficult to compute
the presentation of an invalid document, we may wish to allow invalid documents only
for certain presentations, such as a textual XML source presentation.

Presentation-oriented editing is required for the source editor, because it supports free
textual editing of the program source. To a lesser extent, presentation-oriented editing
is needed also for the equation editor (for textual structure entry) and the tax form (for
editing the computations).

Finally, as the editable table of contents of the word processor use case shows, support
for edit operations on derived structures is desirable. This is not to say that all derived
structures and values should be editable, but in those cases in which it makes sense to a
user, it should be possible to specify the edit behavior for derived structures.

For document-oriented edit operations, a transformation specification formalism is desir-
able. It allows an editor designer to define edit operations specific to a certain type of
document. An example of such an edit operation is the rename operation in the Haskell
editor. Furthermore, the formalism can be used to specify standard generic document-
oriented edit operations such as split and join.

2.2.5 Modeless editing

Besides support for both document- and presentation-oriented editing, an important re-
quirement is the integration of these two kinds of editing. A seamless integration provides
a pleasant edit interface to the user, as the intended operation can be performed on the pre-
sentation the user is working on, without first having to explicitly switch modes. In case
an edit operation is a meaningful operation on both the document and the presentation
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(yielding different results), the editor can give preference to the document operation, with
the possibility to override this preference. Sufrin and De Moor describe a basic modeless
structure editor [82], but the idea of modeless editing is also found in earlier publications
(e.g. Kaiser and Kant [43]).

The most extreme form of mode-switching is when edit operations on different levels
have to take place in separate windows and also have a separate undo-history. This is
the approach taken by many pure structure editors that offer some support for free text
editing, as well as by all existing XML editors. Even worse, the separate free-editing text
mode often has a special text-only format, in which derived values are not shown and
interesting graphical presentations are not possible. In order to get back to document-
oriented editing, the user needs to leave the text in a valid state, or abandon the text
update.

If the editable textual presentation is displayed in-place in the document presentation,
the mode-switching becomes less intrusive. However, the most user-friendly approach is
to avoid mode switching altogether, thus allowing a user to freely edit the presentation,
even if it contains computations and graphical presentations. Moreover, if a presentation-
oriented edit operation makes the presentation invalid, the invalid area should be kept as
small as possible, and document-oriented editing must still be available on the valid parts.

2.2.6 Extra state

If a document is edited, the presentation is updated accordingly by presenting the modified
document. In some cases, however, a presentation may contain information that cannot
be derived from the document. We refer to such information aspresentation extra state.
Analogously, the document may contain information that cannot be inferred from the
presentation. This information is referred to asinterpretation extra state.

A clear example ofpresentation extra stateis found in the outline view example. The
expansion state of the nodes of the tree view needs to be kept track of. However, this
is not information that should be stored in the document tree structure, since the design
of the document type should not have to consider what views may be defined for that
document type. Moreover, several views may be opened simultaneously, each with their
own expansion state. Hence, the expansion state is regarded as presentation extra state.
Other examples of presentation extra state are focus information, local layout settings
(e.g. whether or not auto-layout is turned on), and whitespace in the presentation.

Interpretation extra state, on the other hand, is any information in the document that
cannot be inferred from its presentation. Hence, if a document is only partially presented,
those parts that are not presented are considered interpretation extra state. An example is
an editable table of contents of a word processor, in which the content of the chapters and
sections is interpretation extra state.

In order to handle the use cases, a generic editor should support both presentation extra
state, and interpretation extra state (in the form of editable partial presentations). We do
not consider a generic editor to fully support presentation extra state if it only supports a
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built-in form of it. Instead, it must be possible to explicitly declare parts of the presenta-
tion to be extra state.

In order to support extra state, an editor needs to maintain information about the mapping
between the document and its presentation. If there is no extra state, no extra effort should
be required from the editor designer. Extra state is discussed in more detail in sections 4.2
and 5.2

2.2.7 Summary

Summarizing, to support all five use cases, a generic structure editor must meet the fol-
lowing requirements.

• Genericity.

• Support for any computation over the document.

• A graphical presentation language with a powerful mapping formalism.

• Support for both presentation-oriented and document-oriented editing

• Modeless editing.

• Support for presentation extra state as well as interpretation extra state.

The requirements above all apply to the edit model, but of course many other require-
ments exist for a generic structure editor. Commonly recognized requirements for editors,
which we will not discuss in detail, include: undo functionality, multiple window support,
search/replace functionality, and a help facility.

2.3 Overview of structure editors

Because of the large number of existing systems, we can only mention a selection of
editors in this overview. The editors mentioned are some of the early systems, together
with a number of other editors that contain novel features.

It is important to note that the systems are discussed with the requirements from Sec-
tion 2.2 in mind. If an editor does not meet our requirements or has been left out of the
discussion, this does not necessarily say anything about the quality of that system. Many
generic editors were designed to support a particular class of editor applications (e.g. pro-
gram editors) rather than the entire range of use cases from Section 2.1. Moreover, many
of these systems have interesting features that are orthogonal to our requirements, and the
techniques for supporting these features may be applicable to Proxima editors as well.
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2.3.1 Syntax-directed editors

Most of the editors in this section are specifically designed for program editing and hence
have a rather text-oriented presentation formalism. Moreover, the computation formalism
in such editors is aimed mainly at analyzing source code, and not at performing general-
purpose computations.

Most syntax-directed editors allow partial presentations of the document, and hence offer
support for interpretation extra state. On the other hand, presentation extra state is only
found in built-in tree views on the document structure.

Synthesizer Generator

The Synthesizer Generator [77] is the successor of the Cornell Program Synthesizer [86],
one of the early syntax-directed editors. Because the system is targeted at programming
languages, the presentation is simple and text-only, although newer versions have some
font and color control.

An interesting aspect of the Synthesizer Generator is its support for computations over
the document structure. The presentation of the document can contain computed values,
which are specified using an attribute grammar.

The edit model supports user-specified transformations on the structure, but plain text
editing is poorly supported. The editor uses mode-switching, and after switching to the
textual mode, the presentation must be left in a parsable state before structure editing is
available again.

Over the years, the behavior and design have not undergone many drastic changes, but the
system is still being used and commercially maintained.

LRC

The LRC attribute-grammar system [78] was a research project at Utrecht University.
Higher-order attribute grammars are used to specify the derived values, as well as the pre-
sentation. The system is based on an efficient higher-order attribute-grammar evaluator.
Higher-order attribute grammars allow some computations to be specified more elegantly
than regular attribute grammars.

For the presentation of the document, the Tcl/Tk language is used. This allows for com-
plex presentations with multiple windows, GUI widgets, colors, and basic graphical el-
ements. However, the integration between the generated presentation and the editor is
rather weak. No general focus model is present, and although edit events can be attached
to the Tcl presentation, free editing is only possible in a separate window that contains a
purely textual presentation of the document. The textual presentation cannot be used to
edit the layout of the main presentation, and it does not contain derived values.
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SbyS, Mj ølner/Orm

SbyS is the structure editor of the Mjølner/Orm environment [54]. Mjølner/Orm is a
generic language and software development environment. An interesting aspect of the
environment is that it is truly a generic environment, since language descriptions can be
changed without the need to recompile or regenerate the editor. In contrast, most of the
other systems are editor generators.

SbyS supports textual editing only for entering expressions. In order to overcome the
usability problems associated with pure syntax-directed editing, the editor employs the
concept of direct manipulation. Program constructs are shown in a palette, from which
they can be dragged to the program source or a clipboard.

No formalism for specifying transformations is present, and the only computations that
can be specified are aimed at semantic analysis and code generation. Derived values
cannot be part of the presentation.

PSG

PSG (Programming System Generator) [6] is a generator for language-based interactive
environments, developed at the Technical University of Darmstadt. As the name suggests,
the system is designed for programming languages. The presentations are text-only, and
only LL(1) grammars are supported. The system generates an editor based on a number
of formal descriptions for a language, including a syntax definition, a presentation sheet
(called aformat syntaxin PSG), and a specification of the semantic analysis.

Special focus has been put on incremental analysis over incomplete program fragments.
PSG uses a special form of the attribute-grammar formalism that supports sets of possible
attribute values in order to handle attribution of incomplete document fragments.

However, the presentation may not contain derived values or structures. And although
textual editing takes place in the same view as document-oriented editing, this does in-
volve a mode switch. Furthermore, layout information cannot be edited freely, but is
determined by the presentation sheet.

Other syntax-directed editors

Other textual syntax-directed editors for program editing are the Aloe editor in Gandalf
environment [65], Mentor [24], its successor Centaur [10], Pregmatic [13], Poe [26],
Dose [42], Gnome [31], Pecan [74], Muir [64], and Dice [29]. These systems have their
own interesting aspects, but as far as the editors are concerned they do not deviate much
from the systems already discussed, and hence are not discussed separately. Some more
exotic editors that do not support editing on the presentation are Multiview [73] and VL-
Eli [44].
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2.3.2 Syntax-recognizing editors

Similar to the syntax-directed editors, most syntax-recognizing editors are designed for
program editing. Regarding the computations, however, due to the difficulty of free edit-
ing in a presentation with derived values, none of the syntax-recognizing editors support
arbitrary computations that may appear in the presentation.

Regarding extra state, syntax-recognizing editors are the opposite of syntax-recognizing
editors: several built-in forms of presentation extra state (e.g. whitespace) are supported,
but interpretation extra state is not.

Pan

Pan [7] is a text-only source editor environment. The presentations are text in multiple
fonts, styles, and colors. The system has good support for handling partially incorrect or
incomplete documents.

The computation formalisms in Pan are oriented towards semantic analysis. Logical
constraint grammars are used for specifying, checking, and maintaining contextual con-
straints. Computed information is shown in the presentation by changing the font and
color attributes of the text, but it is not possible to specify arbitrary computations that
form part of the presentation. Furthermore, the editor does not support interpretation ex-
tra state. Hence, it is not possible to specify an editable presentation that shows only
part of the document (e.g. a presentation in which function bodies may be hidden), as the
editor is syntax-recognizing, and therefore the presentation must contain all information
necessary to derive the document structure.

Pan offers some document-oriented editing, but edit operations on document structures are
performed by editing the corresponding parts in the presentation and reparsing the presen-
tation. Edit operations that modify the document structure directly are not supported, as
these are believed to confuse the user. As a consequence, only basic document-oriented
edit operations such as cut and paste are supported, and no document transformations can
be specified. Free text editing, on the other hand, is fully supported, including layout
editing.

GSE, ASF+SDF

The GSE [49] editor has been developed as part of the Esprit project “Generation of
Interactive Programming Environment” (GIPE). It is part of the ASF+SDF meta environ-
ment [46] and under active development. The editor is primarily aimed at programming
languages and the presentations are assumed to be lines of text. GSE supports free editing
of the program text without an explicit mode switch. A powerful transformation formal-
ism is available for specifying document edit operations that keep intact the layout [15].
On the other hand, such transformations cannot form part of the presentation process.
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Ensemble

The Ensemble project is a successor to Pan, based on the recognition that structure editing
cannot only be used for program editing, but also for editing documents of a more graphi-
cal nature, such as documentation. The system handles compound documents containing
subdocuments of different types, and provides document management functionality, such
as versioning.

Ensemble specifies formalisms for performing incremental semantic analysis, but arbi-
trary computations appearing in the presentation cannot be specified. However, some
support for derived structures is present in the presentation formalism.

Ensemble has a powerful graphical presentation formalism, including a constraint-based
box layout. The presentation specification language, however, does not elegantly allow
presentations with a structure different from the document. The presentation formalism
may be used to specify derived structures, but these are not editable.

The edit model supports modeless free text editing, including layout editing, as well as
structural editing.

The Ensemble project has been terminated, but its successor, Harmonia [12], is still un-
der development. Because the monolithic character and ambitious design requirements of
Ensemble slowed down its development, Harmonia is a framework for incremental lan-
guage analysis rather than a single editor generator. The services from Harmonia can be
used to augment text editors, such as Emacs, with language-aware editing and navigation
functionality.

Desert

Built with the experience of the FIELD [75] project, Desert [76] is a syntax-recognizing
editor generator that uses the commercial editor system Framemaker for editing program
sources. The system has many facilities for software development, including database
facilities and an interface for easily defining (non-editable) software visualizations. The
actual editor is a syntax-recognizing editor with attributed text and images in the presen-
tation. However, no structural edit operations, or derived structures in the presentation are
supported.

Other syntax-recognizing editors

Other syntax-recognizing editors similar to the ones that were discussed include Ba-
bel [35], Saga [19], and Pregmatic [13].

2.3.3 Editor toolkits

Besides generic editors and edit generators, an editor can also be built using an editor
toolkit. The toolkit is a collection of libraries and tools that can be used when building an
editor. The editor application itself, however, has to be written by hand. The distinction
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between a toolkit and a generator is not always completely clear, since the specifications
that an editor generator uses for specifying language, presentation, and semantics can
be considered programs as well. The toolkits we consider here all require a substantial
amount of programming in order to build an editor.

The advantage of a toolkit is that the final editor can be customized to a high degree, but
this comes at the cost of the increased effort required for building an editor.

Amaya, Thot

Amaya [94] is the W3C web browser that is built on top of the editor toolkit Thot [71],
which is a successor of Grif [72]. The Thot toolkit supports a number of specification
languages for document structure, presentation, and transformation, but in order to build
an actual editor C code is required to connect the various components.

The presentation formalism in Thot, called P, is a powerful graphical presentation formal-
ism, somewhat similar to Proteus (Ensemble), but with more advanced alignment features.
As a result, complex presentations are possible, such as the presentation for the equation
editor use case.

Thot editors are of a syntax-directed nature. Multiple views on the document may be
edited simultaneously, and user-specified transformations are supported. However, free
text editing can only be done in a separate window in a different mode. Also, no compu-
tations are supported other than some basic counters in the presentation.

Visual Studio editor

The Microsoft Visual Studio environment includes an integrated source editor. Although
the editor does not contain any novel features, and thousands of lines of code need to
be written to tailor the editor for a specific language, we do include it in the discussion
because it is a structure editor that is actually used by a rather large number of people.

The Visual Studio editor is of the syntax-recognizing kind with colored-text presentations.
No document-oriented edit functionality is supported, other than performing semantic
analysis and displaying the results. These results are displayed by marking a location in
the source with a squigglyline, and displaying a corresponding message in a separate win-
dow pane as well as in a tooltip. Pop-up list boxes can be used to show auto-completion
alternatives. Despite its simple model, in which semantic analysis is only possible when
the entire presentation is syntactically correct, the editor provides a surprisingly usable
environment.

2.3.4 XML editors

A large number of XML editors have been developed, but the differences between them
are not fundamental. Almost all XML editors classify as pure structure editors with mode
switching.
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Because the differences are small, we discuss XML editors in general with respect to our
functional requirements. Afterwards, two editors are discussed separately.

Genericity. The XML editors are generic. Most reviewed editors are actual generic edi-
tors, rather than editor generators, and support editing of documents with arbitrary
DTDs. Although, compared to context-free grammars, DTDs have a few restric-
tions in order to make parsing easier [17], the type language is very similar to the
EBNF grammar description formalism and powerful enough to describe the tree-
based document structures we wish to edit.

Computation formalism. Support for computations is very weak for all reviewed edi-
tors. A few editors support basic numbering of elements in the document, but no
arbitrary computations can be specified. Some editors support the transformation
formalism XSLT, but none provide an editable view on the resulting transformed
document.

Presentation formalism. Most XML editors only provide standard views on the docu-
ment. Popular are the raw-text XML source view, a built-in tree view showing the
document structure with the textual content in the leaves, and a slightly less raw
view with tags, represented using a more graphical presentation.

Some editors support a user-defined presentation, or at least allow the user to spec-
ify some attributes for the presentation. However, the presentation formalisms are
generally weak, and the presentations that can be used for editing have to follow
the structure of the XML document. Moreover, there is hardly any support for tex-
tual presentations, making it impossible to present an XML tree that represents an
abstract syntax tree as actual program source code.

It is remarkable that support for textual presentations of XML documents is this
weak, since many languages for processing and describing XML documents are
specified in XML itself (e.g. XML Schema [8, 87] and XSLT [21]) and editing
these languages would be greatly simplified by providing the user with a concise
concrete syntax, rather than the verbose XML syntax.

Editing power. Most XML editors offer simple document-oriented edit operations for
structure entry and manipulation. However, none of the reviewed editors support
user-specified transformations on the tree structure.

In each of the editors, free text editing is supported only in the raw XML source.
Because most XML documents have text and whitespace in the leaves, it may ap-
pear that the document-oriented edit operations are free text editing, but this is not
the case. Textual presentations other than the source presentation cannot be edited
freely. On the other hand, as mentioned, most XML editors offer little support for
textual presentations of the document.

Modeless editing.None of the editors support free editing on the presentation without
a mode switch. Each type of view has a separate window, and though some edi-
tors have a shared undo history for some of the views, no editor has a shared undo
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history for the XML source presentation and its other presentations. Hence, af-
ter switching to source mode, previous edit operations on other views cannot be
undone, and vice versa.

Extra State. The XML editors support extra state similar to the syntax-recognizing edi-
tors. Interpretation extra state is supported in the form of partial presentations, but
presentation extra state is only found in built-in tree views.

Two XML editors have a more sophisticated presentation engine and basic support for
computations, and are therefore discussed separately.

X-Metal

The commercial system X-Metal from SoftQuad is a highly customizable XML editor,
with support for many XML standards and database connectivity. Besides regular source
and outline views, it offers built-in table editing and an editable CSS [11] presentation of
the document. CSS provides a quick and easy way to specify a document presentation,
but its expressive power is limited. Although general computations cannot be specified,
CSS does allow the specification of basic counters in the presentation.

Document-oriented edit operations in X-Metal are rather weak, and transformations can-
not be specified. Furthermore, the freely editable source presentation can only be edited
in a separate mode.

XMLSPY

XMLSPY is a large system that has functionality similar to X-Metal. An important dif-
ference is the presentation system. XMLSPY supports a larger number of built-in pre-
sentations and also supports a user-defined presentation definition for the specification of
simple derived structures. Values from the document that appear in the derived structure
may be edited in place, but the structure itself is not editable.

2.4 Discussion

Figure 2.1 contains an evaluation of the strengths and weaknesses of each of the discussed
editors according to the requirements from Section 2.2. None of the editors scores a
positive for extra state, and besides that, each of the editors has at least one or more
columns with a low score (± or less).

The reason why no editor scores positive on the extra state requirement is that, although
it is rather straightforward to support either presentation or interpretation extra state, it
is hard to support both forms. A syntax-directed editor without support for presentation-
oriented editing may support interpretation extra state simply by ignoring it during presen-
tation. Similarly, a syntax-recognizing editor without document-oriented editing may sup-
port presentation extra state by ignoring it during interpretation. The syntax-recognizing
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Genericity Computation Presentation Editing Modeless Extra
formalism formalism power editing state

Synthesizer Generator ++ ++ ± + −− ±
LRC ++ ++ + + −− ±
PSG ++ + −− ± + ±
SbyS ++ − −− − n/a ±
Pan ++ ± − ± ++ −
GSE ++ −− −− + ++ −
Desert ++ −− ± ± −− −
Ensemble ++ ± + + ++ −
Amaya, Thot + ± + + −− −
Visual Studio ± ± − − n/a −
XMetal ++ − ± ± −− ±
XMLSPY ++ ± + ± −− ±
Other XML editors ++ max.− max.± ± −− max.±
Proxima ++ ++ ++ ++ ++ ++

Figure 2.1: Editor comparison

editors score lower on extra state than the syntax-directed editors because only built-in
forms of presentation extra state are supported, whereas the interpretation extra state for
the syntax-directed editors may be specified by the editor designer.

The main reason why no editor has a line containing only positives is that the require-
ments for the computation and presentation formalisms interfere with the requirements
for editing power and modelessness. The former two requirements determine the presen-
tation complexity of the editor, whereas the latter determine the usability of the editor.
A problem is that the more complex a presentation is, the harder it will be to still offer
modeless free editing on the presentation level.

Syntax-directed editors. The syntax-directed editors tend to do well on the computa-
tion requirement, but at the same time, presentation-oriented editing is weakly supported,
leading to a lower score on editing power. Furthermore, modelessness is not supported
at all. However, if the presentation formalism is simple, and no computed values appear
in the presentation, then modelessness can be supported (see PSG). Most syntax-directed
editors support interpretation extra state, but none support presentation extra state ade-
quately.

Syntax-recognizing editors.The syntax-recognizing editors on the other hand do well on
the presentation-oriented editing and modelessness requirements, but the fact that a doc-
ument is derived from its presentation has a number of consequences. Firstly, the presen-
tation must at all times contain sufficient information to derive the document, which puts
restrictions on the presentation formalism. Secondly, having derived values and struc-
tures in the presentation makes parsing a lot harder and is therefore not supported, hence
the low scores on the computation formalism requirement. And finally, edit operations
on the document are harder to implement. As a result, syntax-recognizing editors do not
score maximally in the computation, presentation, and editing power columns. In contrast
to syntax-directed editors, the syntax-recognizing editors support a form of presentation
extra state, but lack interpretation extra state support.
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XML editors. XML editors are similar to syntax-directed editors, but somehow the com-
putation and presentation formalisms are not very well developed. Semantic analysis is,
of course, not an essential requirement for an XML editor, but computations and derived
structures have many applications also for XML editing. Furthermore, specification of a
textual presentation with a parser is not supported, which is odd because the raw XML
source has an extremely verbose syntax that is far from suitable for viewing or editing
directly.

Although some XML editors have support for graphical presentations, the presentation
specification formalisms are generally weak, disallowing the structure of the presentation
to be different from the structure of the document. Hence, there exists a strong connection
between an XML document and its presentation. A tree-structured document with text in
the leaves lends itself well for editing with an XML editor, but other structures are harder
or impossible to edit. An example is an XML representation of an abstract syntax tree, or
a paragraph that is represented by a list of word elements. Current XML editors cannot
handle such documents.

The close link between the XML document and its presentation sustains the view that an
XML document is a piece of text with markup tags added to it. In this view, the current
XML editors provide sufficient edit functionality. However, if a more powerful editor is
available which releases the tight connection between a document and its presentation,
the view might change, causing new applications for XML to arise.

Discussion

We already mentioned that a negative score in the evaluation table does not suggest that
the editor in question is an inadequate system, but only that it is not suitable for our
purposes. Many of these systems were simply designed with a different scope.

Another reason why some systems may look rather bad is that our requirements primarily
concern the edit model. Several of the evaluated systems have been designed with a large
number of other requirements in mind, which are not taken into account here because
they are concerned more with the environment than with the editor. Structure editors often
have many facilities for managing and versioning documents, as well as complex semantic
analysis methods, whereas XML editors often offer built-in XSLT viewers, DTD viewers
or editors, and database connectivity, as well as support for the many standards existing
in the XML world. However, we do not view these requirements as being essential for the
design of a generic structure editor.

Summarizing, the current and previous generations of structure editors are not powerful
enough to edit the five use cases of Section 2.1. The editors either lack flexibility to
express the required presentations, or have an edit model that is overly restrictive, or even
suffer from both of these problems.
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2.5 The Proxima editor

Proxima will be able to handle all five use cases from Section 2.1. It is designed according
to the requirements from Section 2.2.

The editor uses an attribute-grammar formalism for performing semantic analysis, as well
as for specifying derived structures and values, which may appear in the presentation.
The presentation formalism supports graphical presentations and a box layout model with
alignment, strong enough to specify presentations of mathematical equations. Further-
more, edit operations may be targeted at both presentation and document level, as well as
at derived structures, without mode switching.

In order to support both presentation- and document-oriented editing, as well as pre-
sentation and interpretation extra state, the editor keeps track of bidirectional mappings
between the document and its presentations. The layered architecture, which breaks up
the presentation process, as well as the handling of edit operations in a number of steps,
facilitates the process of keeping the mappings consistent.

An editor in Proxima is specified by a number of sheets that specify the computations,
the presentation, the parser (inverse of the presentation), and the reducer (for handling
edit operations on derived values and structures). The languages of the editor sheets are
declarative and have a strong abstraction formalism, which helps to keep the specification
of simple behavior short, while still allowing the specification of complex behavior as
well.

2.6 Conclusions

Source editors, word processors, and equation editors can all be seen as possible applica-
tions, or instances, of a generic editor. The same thing holds for more exotic applications
such as a tax form, or an outline editor or tree browser. However, no existing editor is able
to handle this range of applications. We believe the reason for this is that existing editors
lack complexity in presenting documents and/or have an edit model that is overly restric-
tive. Or, more precisely, because no editor meets all six of the following requirements.

• Genericity.

• Support for Turing-complete computations over the document.

• A graphical presentation language with a powerful mapping formalism.

• Support for both presentation-oriented and document-oriented editing.

• Modeless editing.

• Support for presentation extra state as well as interpretation extra state.
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In contrast, the Proxima editor is designed meet all six requirements and thus will be able
to handle all five use cases. In order to meet the requirements, Proxima makes use of the
following concepts:

• A layered architecture.

• Bidirectional mappings between document and presentation.

• Concept of presentation/interpretation extra state on several levels of the presenta-
tion process.

• Declarative specification languages with strong abstraction mechanisms for speci-
fying mappings between levels.

The use of many of the features of Proxima is optional rather than forced. Edit operations
on derived structures may be specified or automatically derived in cases for which they
make sense, but they may also be omitted. A similar thing holds for the extra state.
Supporting extra state in a Proxima instantiation requires an effort of the editor designer,
but if no extra state is present, no such effort is required.





Chapter 3

Architecture of the Proxima
editor

A generic editor is a large system consisting of many components. In this chapter, we
focus on those components of the Proxima architecture that are involved in the process of
presenting the internal document to the user, and interpreting the edit gestures given by the
user. Of course, other functionality, such as IO handling, macro processing, or a search
facility, is also important for the usability of the final editor, but implementation of these
features is largely straightforward, despite the fact that it may require a substantial amount
of engineering. The presentation of the document and the handling of edit gestures, on
the other hand, is of paramount importance, because it determines for which applications
the editor can be used, as well as how powerful the editing behavior will be.

The core architecture of Proxima consists of a number of layers, which only communicate
with their direct neighbors. This layered structure is based on the staged nature of the
presentation process. Instead of mapping a document directly onto its final rendering, it
is first mapped onto an intermediate data structure. This intermediate data structure is
mapped onto another intermediate data structure, until the last intermediate data structure
is mapped onto the rendering.

As we mentioned in Chapter 1, the positions at which the document, the rendering, and the
intermediate data structures reside are calleddata levels. Between each pair of levels is a
layer, which is a component that maintains the mappings between the levels. Figure 3.1
schematically shows the levels and layers of Proxima. Only two data levels are visible to
each layer: a higher and a lower level.

There are several reasons why the Proxima architecture is layered:

Staged presentation process.The presentation process is naturally staged. The process
consists of repeatedly mapping structures that have a different meaning on a higher

47
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enriched document level

presentation layer

presentation level

layout level

arrangement level

rendering level

evaluation layer

layout layer

arrangement layer

rendering layer

document level

Figure 3.1: The levels and layers of Proxima.

level onto a common set of lower level structures. For example, a table of contents,
once its structure has been computed, can be presented in the same way as a chapter
structure. Similarly, a line that comes from a formatted paragraph is rendered in the
same way as a line that was explicitly specified in the presentation. Mappings like
these form stages in the presentation process that can be performed by separate
layers.

Specification of presentation and edit behavior.A layered architecture provides natu-
ral hooks for the editor designer to specify specific parts of the presentation and
edit behavior. A separate evaluation layer, makes it possible to separate computa-
tion and presentation, thus allowing different style sheets to be used for a document
together with its derived structures. At the same time, layers offer more control
over backward mappings, such as the specification of how edit operations on de-
rived structures are to be interpreted as edit operations on the document.

Extra state. An important aspect of the Proxima editor is the concept ofextra state,
which is inherently connected to a layered architecture. If information on a level
cannot be computed by presenting the level above, it is presentation extra state, and
if it cannot be computed by interpreting the level below, it is interpretation extra
state.

Maintaining bidirectional mappings. Because Proxima supports editing on all levels,
a mapping between each pair of levels needs to be maintained. Maintaining such
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mappings is easier in a layered architecture. Furthermore, the lower layers can
maintain the mappings automatically.

Efficiency. Some steps in the presentation process, especially in the higher layers, may be
time consuming because global computations need to be performed. In a layered
architecture, it is possible to perform the higher layer computations not at every
keystroke, but only once in a while. For example, in a program editor, parsing the
program may be delayed until the user enters a whitespace character or performs
a navigation operation. Type checking the program may be delayed until after a
certain period of inactivity, or when requested by the user.

The remainder of this chapter contains an informal description of the levels and layers
in the Proxima architecture. A more formal specification of the editor is provided in
Chapter 5, preceded by an informal introduction in Chapter 4.

3.1 The levels of Proxima

A data level in Proxima is not just an intermediate value in the presentation computation,
but an entity in its own right. Together, the data levels constitute the state of the editor.
The six data levels of Proxima are:

Document: The edited document, the type of which is specified by a DTD or an EBNF
grammar.

Enriched Document: The document enriched with computed information.

Presentation: A logical description of the presentation of the document, consisting of
rows and columns of presentation elements with attributes. The presentation also
supports formatting based on available space (e.g. line/page breaking).

Layout: Presentation with explicit whitespace.

Arrangement: Formatted presentation with absolute size and position information.

Rendering: A collection of user interface commands for drawing the absolutely posi-
tioned and sized arrangement.

In the discussion below, we illustrate the different data levels with examples. Note that
when an element at one level is mapped onto elements at another level, an implementation
will have to keep track of information about this mapping. For simplicity, the details
regarding such mapping information have been left out of the examples.
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3.1.1 Document

A document is the internal tree data structure that is edited by the user. The type of the
document is specified by a context-free grammar, with special constructs for lists and
optional values (similar to EBNF). Haskell data types, EBNF, DTDs and XML Schemas
are all, possibly restricted, forms of context-free grammars suitable for describing the
document type. In this thesis, we make use of simple monomorphic Haskell data types
together with the list type.

The exact type formalism is important for document to document transformations (i.e.
document-oriented edit operations), because it should be possible to guarantee type safety
of such transformations. However, for the time being, the only supported document-
oriented edit operations are simple tree-based operations, such as cut and paste, and basic
operations on lists, such as selecting a segment of a list. Therefore, using a context-free
grammar formalism for specifying the document structure is expressive enough.

Because different instances of a generic editor may have different document types, we
give an example document type for a specific instance. The example document consists
of a list of declarations, each of which is an identifier declaration or a comment. An
identifier declaration contains a string that represents the declared identifier, as well as an
expression that consists of conditional expressions, integers, and booleans. The third field
of the declaration is a string that contains additional information about the declaration.
It is used to illustrate the concept of interpretation extra state in the Proxima editor. A
comment consists of a list of strings. The typesString, Int, andBool are primitive
types. Although not very suitable for practical purposes, the chosen document type allows
us to illustrate the different aspects of the Proxima data levels and layers.

data Document = RootDoc [DeclDoc]
data DeclDoc = DeclDoc String ExpDoc String

| CommentDoc [String]
data ExpDoc = IfExp Doc ExpDoc ExpDoc ExpDoc

| IntExpDoc Int
| BoolExpDoc Bool

The explanation of the presentation process in Section 3.4 provides an example document
of this type, as well as examples of the lower levels.

3.1.2 Enriched document

An enriched document is a copy of the document to which derived information has been
added. In the word processor example, the enriched document contains a table of contents,
and each section or subsection element has a field that contains its number. Such derived
information is not present at the document level.
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Besides containing extra information, the enriched document, or a subtree of it, may also
be a reordered version of the document. For example, if the document contains a list of
elements, the enriched document may contain a sorted list of these elements.

As an example of an enriched document type, we take the document type of the previous
section and add a type declaration alternativeTypeDecl to theDecl type. The type decla-
ration is inferred for each declaration. The type of an expression may be integer, boolean,
or erroneous (e.g. the type ofif True then 0 else False). It is also possible to add
the type as a field to theDecl alternative, but separate type declarations make it easier to
show how edit operations targeted at the enriched document are handled in Section 3.5.5.

data EnrichedDocument = RootEnr [DeclEnr]
data DeclEnr = TypeDeclEnr String TypeEnr

| DeclEnr String ExpEnr String
| CommentEnr [String]

data ExpEnr = IfExp Enr ExpEnr ExpEnr ExpEnr

| IntExpEnr Int
| BoolExpEnr Bool

data TypeEnr = IntTypeEnr | BoolTypeEnr | ErrorTypeEnr

3.1.3 Presentation

A presentation is an abstract description of what the document will look like to the user.
It consists of strings, images, and simple graphical elements (lines, boxes, etc.), which are
grouped in rows, columns and matrices. A presentation element has attributes for colors,
line styles, fonts, and alignment. Attribution may be influenced using awith element,
which contains a rule that specifies how the attribution is affected.

There are three ways of positioning elements in the presentation. Firstly, the position can
be specified relative to other elements in the presentation, by placing a list of elements next
to each other in arow, or above each other in acolumn. Elements are aligned according
to reference lines (e.g. the baseline for a string), and stretchable elements may be used to
influence the positioning. Besides rows and columns, amatrix construct presents a list of
lists of elements aligned both horizontally as well as vertically, and anoverlaypresents a
list of elements in front of each other (e.g. for presenting a squigglyline).

The second way of positioning presentation elements is by using aformatterelement,
which positions a list of elements based on the available space. Currently, Proxima only
supports horizontal formatting, suitable for line breaking in a paragraph. Vertical format-
ting (for page breaking) is not fundamentally different, but has not been implemented yet.
Furthermore, support for a page model also requires extensions to the lower levels, which
have not been realized yet.

Finally, a presentation (or part of it) may consist of a list of tokens, which may be iden-
tifiers, operators, integers, strings, etc. Token-list presentations support presentation ori-
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ented editing; on interpretation, the (possibly edited) token list is parsed. Each token
contains information about the whitespace (line breaks and spaces) that precedes the to-
ken in the presentation. This whitespace is an example of presentation extra state, since it
is not stored in the enriched document.

A presentation consisting of tokens may contain parts that we do not want to be parsed.
For example, a textual source editor may have a non-textual presentation for fractions
( 1

1+x). Such a presentation can be included in the token list presentation with astructural
token. A structural token contains a presentation, and is treated specially by the parser.
Although a structural presentation itself is not parsed, it may contain other token lists that
will be parsed (e.g. the numerator and denominator of the fraction may be parsed again).

Unlike the document and the enriched document, the presentation has a fixed type, of
which we present a slightly simplified subset here. The details of the attribution (e.g.
color, font, and reference lines) of presentation elements have been left out by leaving the
typeAttributionRule abstract. Chapter 6 provides a discussion of these details.

data Presentation = EmptyPres

| StringPres String
| TokensPres [Token]
| RowPres [Presentation]
| ColumnPres [Presentation]
| OverlayPres [Presentation]
| MatrixPres [[Presentation]]
| FormatterPres [Presentation]
| WithPres AttributionRule Presentation

data Token = UCaseToken Whitespace String
| LCaseToken Whitespace String
| IdentToken Whitespace String
| OpToken Whitespace String
| IntToken Whitespace Int
| StructuralToken Whitespace Presentation
...

type Whitespace = (LineBreaks, Spaces)
type LineBreaks = Int
type Spaces = Int

data AttributionRule = ...
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3.1.4 Layout

The layout level is the same as the presentation level, except that there are no tokens
anymore. Each token has been replaced by its string, and its whitespace has been replaced
by strings of spaces and by starting a new row for each line break. Thus, at the layout
level, all whitespace is explicit. Formatters are still present, because the exact size and
position information required to remove them is not known at the layout level.

The similarity between the layout and the presentation level is clearly visible in the types:
theLayout type is thePresentation type without theTokens alternative.

data Layout = EmptyLay

| StringLay String
| RowLay [Layout]
| ColumnLay [Layout]
| OverlayLay [Layout]
| MatrixLay [Layout]
| FormatterLay [Layout]
| WithLay AttributionRule Layout

data AttributionRule = ...

3.1.5 Arrangement

At the arrangement level, each element gets its position and size. The position is ex-
pressed in actual coordinates. These coordinates do not necessarily correspond to pixel
coordinates because the rendering may be scaled.

Because the final positions have been determined, the distinction between rows, columns,
etc. is no longer necessary at the arrangement level. Instead, all composite elements are
represented by aNode, which contains a list of child arrangements.

Formatters have been resolved and are represented by a single node containing a list of
nodes that represent the formatted lines (see Section 3.4.4 for an example). The neutral
empty element of the layout is not visible and therefore not part of the arrangement type.

The arrangement has a tree rather than a list structure to enable the specification of prop-
erties, such as font and color information, for an entire subtree, instead of separately for
each element of the arrangement. Moreover, a tree structure is helpful for incremental
arranging, in which only part of the arrangement is recomputed after an edit operation,
whereas the rest is simply copied from the previous arrangement.

Although the coordinates of each element in the arrangement are absolute, the coordinates
are represented in the arrangement data structure relative to the coordinates of the parent
in the tree. Relative positioning makes it easier to reposition a subtree in the arrangement,
because it removes the need to update the position of each element in the moved subtree.
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A With node does not have a geometry field, because it only influences the attribution of
the arrangement tree, without being an actual part of the arrangement.

data Arrangement = StringArr Geometry String
| NodeArr Geometry [Arrangement]
| WithArr AttributionRule Arrangement

type Geometry = (Position, Size)
type Position = (Int, Int) -- (x, y)
type Size = (Int, Int) -- (width, height)

data AttributionRule = ...

3.1.6 Rendering

A rendering is a set of user-interface drawing commands that actually draw on the screen.
Positions are expressed in pixel coordinates. In contrast to the other levels, a rendering is
a list rather than a tree. However, in the future it may change to a tree structure, to support
incremental updates on the rendering.

Because the rendering is highly dependent on the GUI library that is used, we only give
an abstract type.

type Rendering = [RenderingCommand]
data RenderingCommand = ...

3.2 Editing on different levels in Proxima

Before we proceed with a description of the layers, we briefly discuss which levels can
be edited in Proxima. When a level is targeted by an edit operation, the edit operation is
directly performed on that level. Afterwards, the other levels are updated indirectly, as a
result of the interpretation and presentation processes. To offer document-oriented as well
as presentation-oriented editing, several levels may be targeted in Proxima. However, on
some levels it does not make much sense to support direct editing, whereas on others the
semantics of direct editing is not clear. We briefly discuss how each level may be edited,
starting with the rendering.

Rendering

A direct edit operation on the rendering would consist of moving around bitmaps, after
which the updated rendering needs to be interpreted to yield a new arrangement. The
semantics of such edit behavior are unclear and supporting it will probably be difficult,
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and since direct rendering editing is not required by any of the use cases that drive the
design of Proxima (Section 2.1), it is not supported.

Arrangement

Proxima does not support direct editing at the arrangement level. It is not possible to
update the arrangement level and compute an edit operation on the presentation level.
Edit operations targeted at the arrangement only involve the focus. A consequence is
that although rectangular areas may be selected and deleted (the deletion takes place at
a higher level), it is not possible to insert a rectangular area. Such edit behavior, often
referred to as column editing in text editors, is not a strong requirement for Proxima.
In text editors, column editing is used to edit a text that is organized in columns, but
since Proxima is a structure editor, a document that has data that needs to be presented
in columns can use a presentation-level matrix, the elements of which can be selected
column-wise at presentation level.

Layout

The layout level is the lowest level that can be edited directly. All presentation-oriented
editing takes place at the layout level. This includes entering program text in a source
editor, but also text entry in the tax form editor or the word processor. Besides text
insertion and deletion, also cut, copy and paste operations are supported.

Presentation

The presentation level does not need to be edited directly because of its direct corre-
spondence to the layout level. Any edit operation that needs to be performed on the
presentation level can be performed on the layout level.

Enriched document and Document

Because the enriched document and the document are both trees, the edit functionality
on both levels is similar. The only difference between the two is that if the enriched
document is edited, a subsequent interpretation takes place to compute the document
update. Because of the similarities, both levels are discussed together.

The edit operations at the document level are basic tree operations, such as cut, copy and
paste on subtrees. If a list element has a parent that is also a list (eg. a list of subsections
in a list of sections), split and join operations can be applied. An editor designer may
specify additional generic or domain-specific transformations.

For any element except a list, all child elements are required to be present and hence
cannot be left out of the parent element. In order to still be able to manipulate an element
without its children, Proxima employs the concept of a placeholder (also found in the
Synthesizer Generator [77]). A placeholder of a typeT is a dummy value that can be used
in any place where an element of typeT is required. A document containing a placeholder
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is incomplete. The placeholders are typically only present during the construction of a
document (or part of it), or as an intermediate situation during a document modification
that consists of several steps. Lists and optional types do not require placeholders: for a
list type, the empty list is the placeholder, and for an optional it is the empty alternative.

Summarizing, the following three levels may be directly edited in Proxima:

Layout. Mainly text-oriented editing, such as entering keywords (e.g. ”if”, ” then”, or
”else”) or moving the focus downward one line.

Enriched Document. Tree edit operations on derived structures, such as moving an entry
in a generated table of contents.

Document. Tree edit operations, such as moving a section in word-processor document;
deleting a declaration in Haskell source; or moving the focus to a certain subtree of
the document.

3.3 The layers of Proxima

Between each pair of data levels is alayer that takes care of mapping the higher level onto
the lower level (downward mapping, orpresentation) and that maps edit operations on the
lower level onto edit operations on the higher level (upward mapping, orinterpretation).
A layer consists of two components: one for presentation, and one for interpretation.

In the actual architecture, the downward mapping is not a mapping between the higher and
lower levels, but between edit operations on those levels, similar to the upward mapping.
Hence, the upward and the downward mappings are symmetrical, as both are concerned
with edit operations.

Besides mapping edit operations onto edit operations, a layer also takes care of updating
the data levels by performing the edit operations on them. Data levels are updated on
presentation as well as on interpretation. Each layer only updates one of its neighboring
levels, because otherwise levels would be updated twice (each level is surrounded by two
layers). For implementation reasons that we will not discuss here, a layer component
updates its argument level; the presentation component updates its higher level, whereas
the interpretation component updates its lower level.

Figure 3.2 contains a picture of a single layer. In the figure,levelH andlevelL denote the
higher and lower levels, andδH andδL denote the edit operations on these levels. The
present component computesδH from δL , levelH and levelL . And, dually, theinterpret
component computesδL from δH, levelL and levelH. The squiggly arrows (;) denote
thatpresent updateslevelH andinterpret updateslevelL .
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Figure 3.2: A single Proxima layer

Because each layer connects two levels and Proxima consists of six data levels, we have
five layers, one for each of the following steps: evaluation, presentation, layout, arrange-
ment and rendering.

Some of the components in the architecture are parameterized with so calledsheets,
which describe the specifics of a particular editor instance, similar to style sheets in a
web browser. Together with the document type definition, the sheets determine the editor
instance. Currently, the evaluation layer has anevaluation sheetand areduction sheetand
the presentation layer has apresentation sheetand aparsing sheet. The layout layer, on
the other hand only has ascanning sheet, and the lower layers do not have any sheets at
all.

The presentation sheet is specified by an attribute grammar, whereas the parsing sheet is
specified using a Haskell parser combinator library. Section 7.2 provides example frag-
ments of presentation and parsing sheets from the Proxima prototype. The formalisms for
the evaluation, reduction, and scanning sheets have not been established exactly yet.

The reason why some components do not have sheets is that as of yet no sensible purpose
has been found for them. The components without sheets can realize the required map-
pings without the need for parameters specific to a particular editor instance. However, a
future version of Proxima may also support layout sheet and sheets for the lower levels.
A layout sheet could be useful for specifying token based syntax coloring, whereas a ren-
dering sheet could be used to specify rendering details, such as the rounding of corners in
line drawings.

Figure 3.3 shows an overview of the layers of Proxima. For clarity, the arrows between the
layers and the levels are omitted, and a single arrow is used to denote the arrows between
the layers and the edit operations. Because the edit gesture is not an edit operation on the
rendering, it has no update arrow (;). Furthermore, because the document only needs to
be updated once, there is no update arrow on the top-right of the figure. Instead,δDoc is
passed on to the evaluator, which performs the edit operation on the document.

The downward mappings from all layers together form a logical whole (the presentation
process), as do the upward mappings (the interpretation process). Therefore, rather than
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discussing the components pairwise from layer to layer, we give a description of all the
components involved in the presentation process, followed by the components of the in-
terpretation process.

The examples accompanying the component descriptions show a few instances of both
presentation and interpretation extra state. Section 4.2 discusses extra state in more detail
and Section 5.2 provides a formal specification.

3.4 Presentation process

The presentation process is the stepwise mapping of a document onto its final rendering.
Although the mapping is actually a mapping between edit operations on each of the lev-
els, we will present it here as a mapping between levels. The reason for this is that the
mapping between edit operations is important mainly for incrementality, and viewing the
presentation process as a mapping between levels makes it easier to explain.

In order to illustrate the different stages in the presentation process, we follow the presen-
tation of a simple document. After the description of each layer component, the interme-
diate result of the presentation of the document is given.

The document type is the expression list document type from Section 3.1.1. The document
itself consists of two items: a comment and an expression. For brevity, we denote strings
on each level with"..." instead ofStringLevel "...". Note that the comment is part
of the document, unlike comments in regular programs.

Document:

RootDoc [ CommentDoc ["This", "is", "a", "simple", "expression"]

, DeclDoc "simple1"

(IfExpDoc (BoolExpDoc True) (IntExpDoc 1) (IntExpDoc 0))

"info"

]

To a user, this document appears as:

This is a simple
expression

simple1 :: Int
simple1 =

if True then 1
else 0
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3.4.1 Evaluation layer: Evaluator

The first step in the presentation process is the computation of the derived information in
the document. The component that takes care of this is the evaluator. The evaluator is
parameterized with anevaluation sheet, which is a declarative specification of the derived
values. The evaluation sheet may be specified with an attribute grammar, but no final
choice for the formalism has been made yet.

Besides basic values, such as section numbers or the outcome of a computation in a
spreadsheet, the evaluator may also derive tree structures, such as a table of contents.
The derived structures may be partial, duplicated, or reordered versions of the document.

Example: For each declaration, the evaluator computes a type declaration in the enriched
document. In the example this means that a type declaration for"simple1" with type
IntType is included in the item list.

Enriched document:

RootEnr [ CommentEnr [ "This", "is", "a", "simple", "expression" ]

, TypeDeclEnr "simple1" IntTypeEnr
, DeclEnr "simple1"

(IfExpEnr (BoolExpEnr True) (IntExpEnr 1) (IntExpEnr 0))

"info"

]

3.4.2 Presentation layer: Presenter

The enriched document is mapped onto the presentation by the presenter. Similar to
the evaluator, the presenter is parameterized with apresentation sheetthat specifies the
presentation. The presentation sheet is an attribute grammar that defines the presentation
as a synthesized attribute for each element in the enriched document.

In order to support extra state, the presentation layer keeps track of the mappings between
the elements of the enriched document and the elements of the presentation. The presenter
stores the enriched document origin in each presentation element, whereas the parser
stores the presentation elements that were used for parsing in the enriched document.

Tokens are an example of presentation extra state in the presenter, because a token con-
tains its own whitespace, which is not represented in the document or enriched document
levels. If an enriched document structure is re-presented, the original tokens (and corre-
sponding whitespace) are reused.

If an enriched document element that is presented with tokens, is newly created or has
not been presented before, a default value for the whitespace of its tokens is chosen. This
default may come from a pretty printing algorithm. A default value may also be used in
case a structure has been edited in such a way that reusing the old tokens does not make
sense.
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The mechanism of reusing presentation tokens is also used to handle ambiguities in token
representations. For example, when a user has entered the text “001” which is stored
in the document as the integer 1, the mapping between the enriched document and the
presentation ensures that on re-presentation, the integer is presented as “001” instead of
“1”.

The separation between evaluating and presenting is more pragmatic than theoretical. On
the one hand, the entire presentation can be regarded as a derived structure, and on the
other hand the presentation sheet can reorder elements in the presentation and introduce
structures, which is more appropriately done in the evaluation sheet.

The editor designer must make a careful decision on where to specify document evalua-
tion and presentation. Whenever editing on a derived structure is supported, the compu-
tation of the structure must be part of the evaluation. But even if a derived structure is not
intended to be editable, it may be wise to compute it during evaluation. Take for example
a table of contents or a bibliography in a word processor. If the computation of such a
structure is part of the evaluation, then its presentation can be changed without having to
know the details of the computation.

Example: The example presentation of the enriched document is basic: a comment is
put in a formatted paragraph and a (type) declaration is presented in a textual infix rep-
resentation using tokens. The third string field of the declaration"info" is not included
in the presentation in order to have an example of interpretation extra state. The pair of
numbers in each token represents the whitespace (line breaks, spaces) preceding it. This
is a rather basic representation, in which spaces at the end of a line cannot be encoded,
but for demonstration purposes it is sufficient.

TheWith nodes specify the font for the presentation of the declarations. To keep things
simple, the exact details of the attribution rule are not shown: the bracketed declaration
{fontFamily = "name", fontSize = size} specifies the font family and size for the
child of the with node.

Presentation:

ColPres [ WithPres { fontFamily = "Times New Roman", fontSize = 12 }
(FormatterPres [ "This", "is", "a", "simple", "expression" ])

, WithPres { fontFamily = "Courier New", fontSize = 12 }
(TokensPres [ LCaseTokenPres (1,0) "simple1", OpTokenPres (0,1) "::"

, UCaseTokenPres (0,1) "Int"

])

, WithPres { fontFamily = "Courier New", fontSize = 12 }
(TokensPres [ LCaseTokenPres (1,0) "simple1", OpTokenPres (0,1) "="

, LCaseTokenPres (1,2) "if", UCaseTokenPres (0,1) "True"

, LCaseTokenPres (0,1) "then", IntTokenPres (0,1) "1"

, LCaseTokenPres (1,10) "else", IntTokenPres (0,1) "0"

])

]
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3.4.3 Layout layer: Layouter

The layouter processes the tokens in the presentation level, yielding the layout level. Each
list of tokens is mapped onto a column that contains rows of strings. The spaces in the
whitespace of a token are represented as strings of spaces, whereas line breaks cause new
rows in the layout.

Structural tokens are treated specially, because these are not strings. A structural token
is represented in the layout level by itsPresentation field, whereas its whitespace is
handled similarly to the other tokens. The presentation of a structural token in the layout
level is tagged in order to be able to retrieve the structural token during scanning.

Example: The tokens in the presentation level are replaced by strings in the layout level
(the character denotes a space). The formatter is not affected. The line break before the
type declaration is represented by an empty string.

Layout:

ColLay [ WithLay { fontFamily = "Times New Roman", fontSize = 12 }
(FormatterLay [ "This", "is", "a", "simple", "expression" ])

, WithLay { fontFamily = "Courier New", fontSize = 12 }
(ColLay [ ""

, RowLay [ "simple1", " ", "::", " ", "Int" ]

])

, WithLay { fontFamily = "Courier New", fontSize = 12 }
(ColLay [ RowLay [ "simple1", " ", "=" ]

, RowLay [ " ", "if", " ", "True", " ", "then", " ", "1" ]

, RowLay [ " ", "else", " ", "0" ]

])

]

3.4.4 Arrangement layer: Arranger

The arranger computes the exact sizes and positions for all elements in the layout level,
yielding the arrangement. Fonts are queried to determine the size of strings, and child
elements of composite elements such as rows and columns are aligned and positioned.

The arrangement layer also resolves formatters. Based on the amount of available space
for a formatter, its child elements are distributed along rows using a (possibly optimal)
line-breaking algorithm. These rows are put in a column, and the resulting column of rows
is then mapped onto arrangement nodes in the same way as regular rows and columns.

Example: The formatter, which is the first element in the top-level column of the example
layout, is replaced by a node that contains a list of nodes in the arrangement. Furthermore,
each element in the arrangement tree has an exact size and a position relative to its parent,
which are denoted with superscripts:element(x, y)(width×height).
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Note that theWith elements are not removed because the font information is required to
render the arrangement.

Arrangement:

Node
(0,0)(80×84)
Arr

[ WithArr { fontFamily = "Times New Roman", fontSize = 12 }
(Node

(0,0)(80×24)
Arr

[ Node
(0,0)(80×12)
Arr [ "This"(0,0)(17×12), "is"(25,0)(6×12), "a"(41,0)(4×12)

, "simple"(53,0)(27×12)]

, Node
(0,12)(80×12)
Arr [ "expression"(0,0)(42×12)]

])

, WithArr { fontFamily = "Courier New", fontSize = 12 }
(Node

(0,24)(75×24)
Arr

[ ""(0,0)(0×12)

, Node
(0,12)(75×12)
Arr [ "simple1"(0,0)(35×12), " "(35,0)(5×12), "::"(40,0)(10×12)

, " "(50,0)(5×12), "Int"(55,0)(15×12) ]

])

, WithArr { fontFamily = "Courier New", fontSize = 12 }
(Node

(0,48)(80×36)
Arr

[ Node
(0,24)(50×12)
Arr [ "simple1"(0,0)(35×12), " "(35,0)(5×12), "="(40,0)(5×12) ]

, Node
(0,36)(80×12)
Arr [ ... ]

, Node
(0,48)(80×12)
Arr [ ... ]

])

]

3.4.5 Rendering layer: Renderer

The renderer maps each element of the arrangement onto a set of drawing commands for
the user interface. While traversing the arrangement, information from theWith nodes
is used to generate commands that set the font, style, and color of the rendering. All
positions and sizes have already been computed by the arranger, and the renderer only
scales these positions and sizes according to the current scaling factor of the view.

Example: The result of applying the renderer to the example arrangement is a set of
rendering commands that display the comment and the declaration when executed.

Rendering:

[ setFont "Times New Roman" 12, drawText (0,0) "This", drawText (25,0) "is"

, ... ]

The result of executing these commands was already shown at the start of this section, but
for completeness we repeat it here. Note that the comment is rendered in a different font
than the declaration.
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This is a simple
expression

simple1 :: Int
simple1 =

if True then 1
else 0

3.5 Interpretation process

The interpretation of edit operations is layered in the same way as the presentation pro-
cess. However, there are important differences between the two. For the interpretation
process, edit operations are the main focus. Therefore we will not view interpretation
mappings as mappings between levels (as we did for the presentation process) but as
mappings between edit operations.

An edit operation may be interpreted eitherindirectly, or directly (not to be confused with
directly/indirectly editing a level). If an edit operation is interpretedindirectly, the opera-
tion is performed on the lower level, yielding an updated lower level. The updated lower
level is then mapped onto a new higher level, from which a higher-level edit operation is
computed by taking the difference between the new and the previous higher level.

For an example of indirect interpretation, consider the insertion of a token in the presen-
tation level. Rather than mapping this edit operation directly onto an edit operation on the
enriched document, the token is inserted in the presentation, the presentation is parsed,
and the edit operation is distilled from the new enriched document and its previous value.

An edit operation that isdirectly interpreted, on the other hand, is immediately mapped
onto an edit operation on the higher level, without first performing the operation on the
lower level. An example is the interpretation of a mouse click on a position in the ar-
rangement, which is mapped onto a mouse click on a tree path in the layout level.

Note the difference between direct or indirect interpretation versus direct or indirect edit-
ing. A level is edited directly if an edit gesture is targeted at that level, whereas the level
is edited indirectly if it changes due to to an edit gesture targeted at another level. When
a certain level is directly edited, this results in direct interpretation by all layers below
that level, and indirect interpretation by the layers above. Hence, because the rendering
and arrangement levels may not be edited directly, the lowest two layers (rendering and
arrangement) only support direct interpretation.

Because the interpretation of edit operations does not always go through all stages like the
presentation does, and because of the variation in edit operations, it is not helpful to give
a running example of the interpretation process. Instead, a number of separate examples
are provided together with the descriptions of the interpretation components.
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3.5.1 Rendering layer: Gesture interpreter

The gesture interpreter has two tasks. It maps edit gestures onto edit operations for the
designated levels, and it interprets direct edit operations on the rendering as edit opera-
tions on the arrangement, which means that absolute positions in pixel coordinates are
descaled to arrangement level coordinates.

Example: We give two interpretation examples for the gesture interpreter: a mouse click
and a key press.

The mouse edit operation is a single left-click at pixel coordinates (84,57) in a rendering
that has been scaled to 150%. Because of the scaling factor, the coordinates are divided
by 1.5 to get the arrangement coordinates.

MouseClickRen Left (84,57) 7→ MouseClickArr Left (56, 38)

The second example is a key press of the letter ‘a’, which is mapped onto an insert event.
However, a textual insert event is targeted at the layout level instead of the arrangement
level, since the arrangement level cannot be edited textually. Because the insert operation
is not of the arrangement edit type, it is wrapped with aWrapArr constructor. The arrange-
ment layer will remove theWrapArr constructor and pass the insert operation on to the
layout layer.

KeyPressRen ’a’ 7→ WrapArr (InsertLay ’a’)

3.5.2 Arrangement layer: Unarranger

The main task of the unarranger is to map locations in arrangement-level edit operations
onto locations in layout-level edit operations. A location that is specified in absolute
coordinates is first converted to a location in the arrangement tree, which is specified as a
tree path. Subsequently, the arrangement tree path is mapped onto a layout tree path. The
arrangement tree is largely isomorphic to the layout tree, except for the formatter subtrees,
as these are represented by nodes that contain lists of nodes (representing the formatted
lines) in the arrangement. Therefore, the mapping is almost the identity function, except
for paths to children of nodes originating from a formatter, which are mapped onto paths
to the corresponding child elements of the formatter.

Example: A left-click mouse event at position (56,38) in the example arrangement from
Section 3.4.4 represents a click on the string “Int” in the layout from Section 3.4.3. To
be precise, it is a click on the left side of the letter ‘I’. If we represent a path in the
arrangement tree by a list of integers and a 0 denotes the first child, then this position is
represented by[1,0,1,4,0]. Thus:

unarrange (MouseClickArr (56,38) Left) = MouseClickLay [1,0,1,4,0] Left
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3.5.3 Layout layer: Scanner

The scanner is the first layer that supports indirect interpretation, since the layout level
may be edited by the user. Edit operations targeted at the layout level are performed
on the layout level, after which the level is scanned, yielding the new presentation. An
edit operation on the presentation is obtained by taking the difference between the new
presentation and its previous value.

The scanner operates only on the subtrees in the layout layer that originate from a token
list on the presentation level, while leaving other parts of the tree unaffected. Every such
subtree, which is always a column of rows, is scanned by inspecting it row by row, and
recognizing the tokens that are represented by the strings in each row. For each token, the
whitespace (spaces and row transitions) preceding it is recorded and stored in the token.
The parts of the layout tree that originate from structural tokens, have been tagged by the
layouter and are scanned as structural tokens.

If the scanner encounters an error during the scanning process, (e.g. in case of an unter-
minated string), it generates an error token, which will subsequently cause a parse error
in the parsing layer. The details of this process are not discussed here.

The scanner is parameterized with ascanner sheet, which contains a set of regular expres-
sions describing the allowed set of tokens. Since different parts of a layout may require
different scanners (e.g. in a presentation that shows both Java and Haskell code), a scanner
sheet can contain several sets of token descriptions. The layout level contains information
on what kind of presentation gave rise to the parts that need to be scanned, which allows
the scanner to use the appropriate set of token descriptions.

Scanning is usually a localized process, so rather than re-scanning an entire token list,
only the edited part of the layout level is scanned and used to compute the appropriate
presentation-oriented edit commands. An exception to this local behavior is formed by
tokens with an explicit start and end tag, such as strings or characters. If a string or
character quote is entered, this may affect more than just the edited part of the layout.

The scanner layer does not yet support the handling of comments that may appear any-
where in the source. Because such comments are not part of the document, they need to
be handled as presentation extra state, similar to whitespace. Comments may affect the
locality of the scanning process in the same way as strings.

Example: Consider the example layout level from Section 3.4.3 and assume that the edit
operation on the layout is the insertion of a space between the characters ‘e’ and ‘1’ in the
identifier “simple1” of the declaration. Because “simple 1 = if . . . ” is not a valid
declaration, the edit operation will cause a parse error in the presentation layer, but this
has no consequences for the example at the layout layer.

In order to compute the edit operation on the presentation, we first apply the layout edit
operation to the layout level, yielding:
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...

ColLay [ RowLay [ "simple 1", " ", "=" ]

, RowLay [ " ", "if", " ", "True", " ", ...]

...]

...

Now, the scanner is invoked on the updated parts of the layout, which gives rise to the
following list of tokens.

TokensPres [ ...

, LCaseTokenPres (1,0) "simple", IntToken (1,0) 1,

, OpTokenPres (0,1) "="

, LCaseTokenPres (1,2) "if", UCaseTokenPres (0,1) "True"

...]

From the new token list and the old presentation, an edit operation on the presentation
level can be derived:

insertLay ’ ’

7→
replacePres[ LCaseTokenPres (1,0) "simple1" ]

by[ LCaseTokenPres (1,0) "simple", IntToken (1,0) 1 ]

We use an informal notation for both theinsertand thereplaceedit operations to improve
readability. The actual insert operation also contains a reference to the target location of
the inserted character, and the replace operation contains the location of the target token
list, rather than the list itself.

3.5.4 Presentation layer: Parser

It is not possible to map edit operations on the presentation directly onto edit operations on
the enriched document. Consider, for example, the insertion of the string “if” in a source
editor. From this insertion command only, we cannot compute an enriched document
update. Instead, we need to take the indirect approach: the edit operation is applied to
the presentation, which is then parsed to yield a new enriched document. Similar to the
scanner, the parser layer computes an edit operation on the enriched document by taking
the difference between the new enriched document and its previous value.

The parser component is parameterized with aparsing sheet, which contains the actual
specification of the parser. The parser is specified in Haskell, using a specialized parser
combinator library. The parser combinators from this library parse a presentation tree
instead of a string. Furthermore, special support is available for handling interpretation
extra state.

The parser makes a distinction between token lists and the rest of the presentation. Only
the token lists are actually parsed. The other parts of the presentation may not be edited at
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the presentation level and are therefore mapped onto their originating enriched document
structures. Because parsed presentations may contain parts that are not parsed, and vice
versa, the two processes alternate.

Each part of the presentation that is not parsed is mapped directly onto the enriched doc-
ument element of which it is the presentation. In order to do so, the parser layer uses the
information on the enriched document origin that is stored in each presentation element
by the presenter.

If the originating enriched document element has children that are also presented, these
children are determined via the same process. A child that does not appear in the presen-
tation is reused from the previous enriched document level, or, if this is not possible, it
is initialized to a default value. If a child has a token list presentation, the parser process
takes over.

The parser that is applied to the list of tokens is specified in the parsing sheet. Parse errors
are represented in the document by error nodes that may appear anywhere in the document
tree. If aStructuralToken is encountered, the previously described mapping process
is invoked again. Because the enriched document may contain information that is not
presented (i.e. interpretation extra state), the parser tries to reuse the enriched document
nodes from the previous version of the enriched document. If a node cannot be reused,
the extra information is initialized to a default value.

In order to support presentation extra state for tokens (e.g. whitespace), the parser stores a
reference to the parsed tokens in the resulting enriched document node. This information
is used when the enriched document is presented. Because currently the only form of
presentation extra state is whitespace in tokens, the mapping information only needs to be
kept for enriched document elements that are parsed.

Example: We consider a delete operation on a number of successive tokens in the presen-
tation. For simplicity, each declaration or type declaration in our example is presented as
a separate token list and will therefore be parsed separately. Thus, presentation-oriented
edit operations have to be local to a single declaration. In an actual source editor, the
token lists are concatenated, and editing may span several declarations.

The presentation level for the example is the same as in Section 3.4.2. The part that is
affected by the edit operation is:

...

TokensPres [ LCaseTokenPres (1,0) "simple1", OpTokenPres (0,1) "="

, LCaseTokenPres (1,2) "if", UCaseTokenPres (0,1) "True"

, LCaseTokenPres (0,1) "then", IntTokenPres (0,1) "1"

, LowercaseTokenPres (1,10) "else", IntTokenPres (0,1) "0"

]

...

The delete operation removes the"if", "True", "then", "1", and"else" tokens, giv-
ing rise to a new presentation level.
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...

TokensPres [ LCaseTokenPres (1,0) "simple1", OpTokenPres (0,1) "="

, IntTokenPres (0,1) "0"

]

...

A parser is invoked on the new list of tokens. The result is not an entire enriched doc-
ument, but only an updated declaration forsimple1. Interpretation extra state children,
such as the third child of the declaration (see the example in Section 3.4.2), are not in
the presentation and are therefore reused from the previous value of the declaration. The
previous value of the declaration is obtained from a reference that was stored in its tokens
on presentation.

DeclEnr "simple1" (IntExpEnr 0) "info"

The edit operation is computed from the new enriched document part and the previous
enriched document, yielding:

deletePres"if" ... "else"

7→
replaceEnr (IfExpEnr (BoolExpEnr True) (IntExpEnr 1) (IntExpEnr 0))

by(IntExpEnr 0)

It should be noted that the second(IntExpEnr 0)in the replacement operation is exactly
the same as the one in the else part of the if expression. In this case, the expression is
uniquely determined by its presentation, and hence parsing it gives an exact copy, but
even if this were not the case, both expressions would be the same, due to the reuse
strategy of the parser. For example, if the integer expression has an extra field that is not
presented, the replacement integer expression gets the value for that field from the integer
expression in the else part. This is analogous to the"info" string for the declaration.

3.5.5 Evaluation layer: Reducer

The reducer takes care of mapping edit operations on derived structures onto edit opera-
tions on the document. The specification of the mapping is in thereduction sheet, which
in many cases can be automatically derived from the evaluation sheet. Automatic reduc-
tion behavior is typically possible for parts of the enriched document that are duplicated,
reordered, or partial versions of parts of the document.

If a document structure is duplicated in the enriched document, and one of the dupli-
cates has been edited, the reducer resolves the situation by taking the duplicate that was
edited. If both duplicates have been edited, either the edit operation is blocked, or a
choice between the two is made. Reordered and partially presented document structures
are handled by maintaining a mapping between each enriched document element and the
document element from which it originated.
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Although it is possible for a derived structure to be editable, this behavior is not enforced.
For many derived structures, a reverse mapping does not make much sense. For example,
it is hard to give a clear semantics to the direct editing of a chapter number. However,
when two chapters in a table of contents are swapped, swapping the two corresponding
chapters in the document could well be the desired effect. When the reverse mapping
makes sense, it can be specified in the reduction sheet. When not, editing derived struc-
tures can be forbidden.

Besides regarding the reduction as the reverse of the evaluation, it is also possible to use
reduction as an extension of the parser. As an example, consider a program source that
contains definitions of infix operators with user-specified associativity and precedence.
Parsing such operators in one pass requires a sophisticated parser, whereas the two-pass
solution is straightforward.

Another application of reduction is the handling of redundancy in a document presen-
tation. For example, when a document type for expressions does not have an explicit
representation for parentheses, redundant parentheses that are entered by a user can be
removed by the reducer, to be added again by the evaluator.

Example: The example editor supports editing on the function name in a type declaration,
which causes an update on the name in the corresponding declaration. The example edit
operation is an update on the function name in the type declaration of the enriched docu-
ment from Section 3.4.1. The name is changed from"simple1" to "simple". Thus, we
get the following updated enriched document.

RootEnr [ CommentEnr [ "This", "is", "a", "simple", "expression" ]

, TypeDeclEnr "simple" IntTypeEnr
, DeclEnr "simple1"

(IfExpEnr (BoolExpEnr True) (IntExpEnr 1) (IntExpEnr 0))

"info"

]

Both the type declaration and the declaration are presentations of the declaration in the
document. Hence, we have two duplicate presentations, the first of which (the type dec-
laration) is a partial presentation, since the type declaration does not contain enough in-
formation to compute the declaration in the document. Thus, the missing right-hand side
is interpretation extra state.

The reducer processes the enriched document and maps both the type declaration and the
declaration onto a document level declaration. Because the type declaration has no right-
hand side expression, the value for the expression is reused from the previous value of the
declaration in the document. The result of interpreting the type declaration is a declaration
with string"simple" and expression (if True then 1 else 0). On the other hand,
the interpretation of the declaration itself is the identity and yields a declaration with
string"simple1" and expression (if True then 1 else 0).
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We now have two conflicting interpretations for the same document declaration. The
conflicts are resolved in favor of the updated fields. In this case, it means that the string
"simple" is chosen. The result is a new document.

RootDoc [ CommentDoc ["This", "is", "a", "simple", "expression"]

, DeclDoc "simple"

(IfExpDoc (BoolExpDoc True) (IntExpDoc 1) (IntExpDoc 0))

"info"

]

And the document-level edit operation thus becomes:

replaceEnr "simple1" by"simple" 7→ replaceDoc "simple1" by"simple"

3.6 The choice of layers in Proxima

The choice of layers for the Proxima editor is based on pragmatic considerations. On the
one extreme, the entire editing process could be put in one large layer, resulting in an
unwieldy presentation relation. On the other extreme a separate layer could be defined
for every small step in the process, giving an awkward and inefficient editing process.
The choice of layers in Proxima is a balance between these two extremes. This section
explains why Proxima consists of the five layers that were presented in this chapter.

The separation of document evaluation and presentation serves two purposes. Firstly, the
separation makes it possible to have different presentations for a document together with
its derived structures. Secondly, it facilitates the specification of edit behavior on derived
structures. When parsing and reduction are mixed, such behavior is harder to specify.

The reasons for a separate layout layer are the automatic whitespace handling for token
presentations, as well as efficiency, since first scanning and then parsing is more efficient
than parsing on a character basis. A downside is that different document types require
slightly different scanning methods, and a generic scanner that is able to handle all exotic
cases is hard to construct. Moreover, in some cases, an editor designer may be interested
in dealing with whitespace at enriched document or document level. However, in these
cases, the scanner layer may be bypassed altogether, allowing the editor designer to parse
on a character basis and explicitly deal with whitespace.

Below the layout level are the arrangement level and the rendering level. The separation
between these two levels and the higher levels is obvious, since keeping the position and
size computations in a separate layer prevents cluttering the higher layers with needless
detail. The reason why the arrangement and rendering have been split is to keep the part of
the architecture that deals with the GUI-specific issues as small as possible. Furthermore,
the arrangement contains exact information on the location and size of each item that is
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to be rendered, which is useful for resolving pointing issues and performing incremental
updates.

The arrangement process itself also consists of steps, since a formatter is mapped onto
an intermediate column of rows, which is then arranged in the same way as the other
rows and columns. However, these steps are very closely intertwined, and separating the
arrangement layer into different layers does not seem worthwhile.

Besides the current layers, several other layers are imaginable. For example, a post-
arrangement layer could process the arrangement in order to handle footnotes or the for-
matting of paragraphs that contain text in languages with different reading directions.
Similarly, an extra evaluation layer is conceivable when computations over computed
structures need to be specified. When yet other computations are desired on the resulting
computed structures, even multiple evaluation layers may be required. This brings up the
issue of using higher-order attribute grammars [91] for the evaluation layer. However,
when using higher-order attribute grammars, it is not straightforward anymore to handle
extra state at intermediate levels, nor is it clear how to interpret edit operations on lower
levels. In Proxima, these problems are dealt with by the layered architecture. Before it is
possible to do presentation, or even just evaluation, with higher-order attribute grammars
in Proxima, more research is necessary.

3.7 Conclusions

The architecture of the Proxima editor consists of five layers connecting six data lev-
els. Several layers are parameterized with sheets that specify the behavior of the layer.
The most important sheets are the presentation and parsing sheets, which are specified,
respectively, with an attribute grammar and a combinator parser. The other sheets are
the evaluation and reduction sheets of the evaluation layer, and the scanning sheet of the
scanning layer, but no final choice has been made about the formalisms for these sheets.

Proxima has an open architecture, to which an extra layer can be added with relatively lit-
tle effort. Moreover, each layer may easily be extended or modified. Instead of specifying
the computations in an evaluation sheet, the evaluation layer may, for example, invoke an
external type checker.

The value of each level in the Proxima editor contributes to the total editor state, rather
than just being an intermediate value in a computation. One reason for this is to sup-
port incrementality, but a second reason is that a level may contain extra state. More
specifically, from the perspective of a single layer, a higher level does not always contain
enough information to compute the lower level and vice versa. By storing both levels,
together with information on how elements in one level depend on elements in the other,
it is possible to compute the lower level from an updated higher level and vice versa.

Each layer in the Proxima system maintains information on the bidirectional mapping
between the neighboring higher and lower levels. In the lower layers, the mappings can
be maintained by the editor, because the lower layers operate between levels that have
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fixed types, and furthermore, have presentation and interpretation mappings that are less
customizable by the editor designer. For the higher levels, however, the editor designer in
some cases needs to specify how the mappings are to be maintained.

The formalisms for the sheets at the presentation layer offer special support for main-
taining the mapping information, but more research is required to improve this support.
Furthermore, the formalisms for the evaluation and reduction sheets need to be deter-
mined. Ideally, only the evaluation sheet needs to be provided, from which the reduction
sheet is derived automatically. However, for the time being, we consider it an acceptable
solution that both sheets are provided by the editor designer. For frequently appearing
patterns in the evaluation process, automatic reduction could be supported. Similar func-
tionality is desirable for the presentation layer: for frequently appearing patterns in the
presentation, a parser may automatically be generated.





Chapter 4

Prelude to the specification

In this chapter, we informally introduce several concepts that play a role in the spec-
ification of a layered editor, to be given in Chapter 5. The discussion in this chapter
also recapitulates some issues already mentioned in Chapter 3. Although many examples
come from the Proxima editor, the concepts are general and apply to any layered structure
editor.

Section 4.1 introduces the presentation invariant that is to be maintained by an editor and
sketches the different steps of the editing process. In Section 4.2 we explore the concept
of extra state for presentation mappings between tree structures, and sketch a method for
handling such extra state. Finally, Section 4.3 discusses how to handle edit operations on
presentations that contain duplicate information.

4.1 The editing process

An editor maintains a presentation relation between a document and its presentation. We
denote the document bylevelH :: LevelH, and the presentation bylevelL :: LevelL . The
relation between the two isPresent :: LevelL ∼ LevelH. The level order in the relation
type is such that the notationl Present hlooks similar to the notation for a presentation
mapping represented by a function:l = present h.

The invariant, maintained by the editor is that the lower level is a valid presentation of the
higher level:

Presentation invariant: levelL Present levelH

The precondition of an edit step is that the presentation invariant holds. The user then
modifies the presentation (givinglevel′L ), and most likely breaks the invariant. In order to

75
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restore the invariant, the editor updates the document level by interpreting the modified
presentation, which yieldslevel′′H. However, because the user-updated lower level is often
not a completely valid presentation, the document update alone may not yet restore the
presentation invariant. For example, a program fragment may have been entered without
proper syntax coloring, or a chapter title may have been modified in the chapter itself
but not in the table of contents. In order to guarantee the restoration of the presentation
invariant, the updated document is presented again (level′′L ).

Figure 4.1 schematically shows the editing process for one edit step. The final higher-level
value is calledlevel′′H rather thanlevel′H to enable a consistent notation for final values.
Furthermore, in the multi-layered editor, introduced in the next section,level′H will denote
an intermediate value for the higher level.

The final valueslevel′′H and level′′L satisfy the presentation invariant and serve as initial
values for the next edit step. In the rest of this chapter, as well as in the next, we use this
notation for the values of the data levels in the different stages of an edit step.

Figure 4.1: A single edit step. Figure 4.2: A concrete example.

Figure 4.2 shows the values of the higher and lower levels for an actual example. The
document is an expression that is presented using an italic style for identifiers and mathe-
matical symbols for operators. The presentation of a sum in modified by entering the text
”\x->” at the beginning. After the document update, the presentation invariant clearly
does not hold. It is restored by re-presenting the document, and thus changing ”\x->1+x”
to ”λx→ 1 + x”.

Instead of updating the lower level (presentation-oriented editing), a user may also per-
form an direct update on the higher level (document-oriented editing). However, we do
not consider document-oriented editing in much detail, because after a document update
the presentation invariant can be restored by simply re-presenting the updated document.

A layered editor

In order to describe the layered architecture of Proxima (see Chapter 3), we refine the
simple editor by splitting the presentation relation. APresentrelation that is split inton
components (Presenti :: Leveli ∼ Leveli−1) gives rise ton + 1 data levels (Level0...n).



4.2 Extra state 77

Figure 4.3: An edit step at one layer.

Lower levels get higher indices, withLevel0 being the document level andLeveln the
presentation level.

From the perspective of a single layer, we only need to consider a singlePresenti relation
and two data levelsLeveli−1 andLeveli . We drop the subscript of the relation and refer
to the data levels asLevelH and LevelL . Figure 4.3 shows the updates during an edit
step from the perspective of a single layer. Instead of being updated immediately by
the user, the lower level gets updated by the layer below (which is the effect of the user
updating the lowest level). At the top of the figure, the layer computes an intermediate
level′H, instead of directly computinglevel′′H. This level′H is processed by the layers above,
yielding level′′H. At the document level,level′0 is copied tolevel′′0 . Note that there is no
incrementality in the model: level values are passed up and down, but not to the right.

A simple example shows the need for the intermediatelevel′H. Consider a document that
consists of a list of numbers, which is mapped onto an enriched document that contains the
list together with its sum. The presentation is a textual presentation of both the list and the
sum. Suppose that the list is edited at the presentation level. At the presentation layer, the
updated presentation is parsed, yielding an intermediate enriched document valuelevel′H,
which is the new list with the old sum. This intermediate value is then interpreted and
presented by the evaluation layer above, yielding the finallevel′′H, which is the updated
list with a correct sum.

4.2 Extra state

As we saw in Section 2.2.6, a lower level may contain information that cannot be com-
puted by presenting its adjacent higher level. Similarly, a higher level may contain in-
formation that cannot be computed by interpreting the lower level. The information in a
level that cannot be computed by presenting, or interpreting an adjacent level, is referred
to asextra state. In this section, we give an informal description of extra state, as well as
a number of examples. Section 5.2 presents a formal specification.
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Generally speaking,presentation extra stateis information that influences the way in
which the higher level is viewed without being part of the higher level. An example of
this is found in a tree-browser presentation (see Section 2.1.4). The information whether
a node in the tree is expanded or collapsed is not part of the document. Therefore, this
expansion state is part of the presentation extra state.

Interpretation extra state, on the other hand, consists of the parts of the higher level that
are not shown in the presentation. Again, the tree browser provides an example, since it
shows the structure of the document while leaving out the content. The content that is left
out is part of the interpretation extra state.

Because the presentation or interpretation does not specify the value of the extra state in
the resulting level, extra state is reused, if possible, from the previous value of the level.
A general method for reusing extra state is difficult, if not impossible, to give. Therefore,
in this section, we consider a special case of extra state, for which we sketch a method for
reuse. We only consider extra state that is associated with a specific parent node in the
tree. Whether or not the extra state can be reused depends on whether or not its parent
node can be tracked down in the updated level. This form of extra state is sufficient
for specifying the use cases presented in Section 2.1. Chapter 5 contains a more formal
specification of extra state.

4.2.1 The presentation mapping

In order to specify when a node is extra state, we first take a closer look at the presenta-
tion relation. In this section, we assume that bothLevelH andLevelL are tree structures.
Furthermore, we assume thatPresentnot only relates a higher level to a lower level, but
that it also establishes a relation between the nodes on these levels. If, for example, a doc-
ument containing an if expression is mapped onto a presentation that contains the three
tokens “if”, “ then”, and “else”, then this establishes a relation between theIf node
in the document, and the three token nodes in the presentation. Thus, for any two levels
LevelH andLevelL between which the presentation invariant holds, we also have a relation
between the nodes of these two levels.

Figure 4.4 shows two levels for which the presentation invariant holds. In addition, the
figure shows the relation between the nodes of both levels, using dotted arrows. To reduce
the number of arrows in the figure, the lower-level nodes are grouped. An arrow between
two nodes only relates the nodes and not the subtrees rooted at these nodes.

We assume that the relation between nodes is a1 : n relation, which implies that the
presentation of a higher-level node may consist of several lower-level nodes, but each
lower-level node is in the presentation of at most one higher-level node. This restriction
concerns only the node mapping; thePresentrelation itself between two levels isn : m.

The choice for1 : n relations follows naturally from the compositional way in which
a presentation relation is usually specified: by specifying a presentation rule for each
higher-level node. No practical examples have been found that suggestn : m relations are
needed.



4.2 Extra state 79

Figure 4.4: A mapping between the nodes of two levels.

Figure 4.5: The presentation of node EH .

The1 : n restriction is only for dealing with extra state. It is still possible to have a lower-
level node depend on several higher-level nodes, but when dealing with extra state, each
lower-level node is assumed to be the presentation of at most one higher-level node.

Thus, besides relating a set of higher-level values to a set of lower-level values,Present
also relates each node of the higher level to zero or more lower-level nodes. Figure 4.5
schematically shows the presentation of a node (EH) in the higher level.EH hasn children
(CH,0...n−1). The presentation ofEH is a number of trees (although usually just one) that
may consist of several nodes. In the figure, the first tree is shown in more detail. It consists
of m nodes (EL,0...m−1) and is rooted atEL,0.

The CL,0, . . . , CL,l−1 subtrees in the lower-level tree are not part of the presentation of
EH . Typically, these are the presentations of the children ofEH , but in general they can
be (part of) the presentation of any node in the higher level.

Figure 4.6 provides a more concrete example of a presentation, taken from a source editor
(see Section 2.1.1). A parenthesized sum in the document is presented as a list of tokens,
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Figure 4.6: The presentation of a parenthesized sum.

which are represented by strings. The figure shows only part of the document and its
presentation. To the editing user, the expression will appear as ”(1+2)”. The example is
somewhat simplified, because it does not contain whitespace. Whitespace is part of the
presentation extra state, which is discussed in following subsection.

4.2.2 Extra-state nodes

In Figures 4.4 and 4.6, each node is connected to a node in the adjacent level, either by
a direct arrow, or by being inside an ellipse that is connected by an arrow. However, it is
possible that a node does not have an arrow connecting it to a node in the adjacent level.
Such nodes are not determined by the presentation relation, and hence are part of the extra
state of the level.

Extra state may occur on the higher level as well as on the lower level. On presentation, a
lower level is computed from a higher level, which means that the extra state in the lower
level needs to be dealt with. Hence, lower-level extra state is referred to aspresentation
extra state. Similarly, on interpretation of a level, we only need to deal with the higher-
level extra state, which is referred to asinterpretation extra state. In fact, if we consider
not just one layer, both kinds of extra state may exist on a single level. This is explained
in Section 4.2.3.

Figure 4.7 shows two examples of extra state, one in the lower level and one in the higher
level. On the left-hand side, a document node is presented as a token. The shaded whites-
pace node (0,1) (denoting the line-breaks and spaces before the token) is not specified by
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Figure 4.7: Two examples of extra state.

the presentation mapping, and hence part of the lower level presentation extra state. On
presentation, tokens are reused, causing the whitespace information to stay the same. In
order to do this, we need to know exactly on which presentation nodes a document node
was mapped when it was previously presented. In case a token has no previous whites-
pace (e.g. because it is the presentation of a newly inserted document part) a default value
is used.

The right-hand side of Figure 4.7 shows an example of interpretation extra state: a word
processor with an editable table of contents. A document chapter is presented only par-
tially, since the content of the chapter is left out.

For simplicity, we assume that the enriched document only contains the table of contents
and not the chapters themselves. Thus, we only have to consider the extra state here and
not the duplication (titles that appear in the table of contents as well as in the chapters).
Section 4.3 discusses how to handle duplications in general, and the same method can be
used for the table of contents.

On interpretation, the table of contents is mapped back onto a complete document, which
includes the shaded content parts that are not in the enriched document. The title of
a chapter comes from the enriched document, whereas its content is reused from the
previous document.

4.2.3 Each intermediate level has two kinds of extra state

Figure 4.7 only shows one layer, but since each data level except the document and the
rendering is in between two layers, each level between the document and the rendering
may have both presentation and interpretation extra state.

Figure 4.8 shows a data level between two layers. At the middle level, a shaded left or
right half denotes that a node is extra state. Nodes with a shaded left half are presentation
extra state for the higher layer, and nodes with a shaded right half are interpretation extra
state for the lower layer. Extra state in one direction is independent of extra state in the
other direction, hence a node in the figure can have zero, one, or two shaded halves.
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Figure 4.8: Presentation and interpretation extra state in one level.

The whitespace extra state in tokens shows that extra state in one direction is independent
of extra state in the other direction. Whitespace is presentation extra state of the presen-
tation level, since it cannot be computed when presenting the enriched document. On the
other hand, when scanning, whitespace in tokens is computed from strings and line breaks
in the layout level. Hence, whitespace is not interpretation extra state of the presentation
level.

4.2.4 Reusing extra state

When a new value for a level is computed on presentation, or interpretation, the values
for its Extra-state nodes are taken from the previous value of that level.

In order to reuse nodes, a layer needs to keep track of additional information regarding
the presentation mapping. For each higher-level node, the layer must keep references
to the lower-level nodes of its presentation, and for each lower-level node there must be
a reference to the higher-level node whose presentation it is part of. These references
corresponds to the dotted arrows between nodes in the figures of this section.

We sketch the process of reusing for the presentation direction. For interpretation, the
process is analogous.

We assume that the update on the higher level is incremental; except for the parts that
have been edited, the updated level is equal to its previous value. On presentation of a
higher-level node, the lower-level nodes of its previous presentation are used to construct
its new presentation, if possible. If the higher-level node is new, the presentation will
consist of new lower-level nodes. Furthermore, also in case the node was changed in such
a way that its previous lower-level nodes cannot be reused, new lower-level nodes are
used.
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The resulting lower level is not a completely new value, but an incrementally updated
version of the previous value. Only those parts of the presentation that correspond to a
changed part of the higher level are changed.

When a lower-level node is reused, also its Extra-state children are reused. For nodes
that are no longer present in the presentation, Extra-state children are lost. Extra-state
children for new lower-level nodes are set to a default value. Thus, if an entry is added
to a table of contents in the (presentation of the) enriched document of a word processor,
an empty chapter (or section) is added to the document. Similarly, if a document-oriented
edit operation in a source editor adds a new structure to the document, its presentation
gets a default layout.

4.2.5 Safety of extra state

The mechanism of reusing extra state based on its parent nodes is not infallible. Several
situations can cause the loss of extra state, both in the presentation as in the interpretation
direction. We present two situations here.

Firstly, if the presentation of a node depends not only on the node itself, but also on
nodes elsewhere in the tree, then the presentation may change, even if the node itself
remains unchanged. In that case, it is possible that the lower-level nodes of the previous
presentation cannot be used for the new presentation.

For interpretation extra state, updates elsewhere in the tree can be even more dangerous.
When a presentation is computed by a parser, updates on the presentation before a certain
token may greatly influence how the token is parsed. Hence, extra state in a presentation
that allows full text editing is vulnerable.

Secondly, if a node is transformed, it may make sense to reuse its extra state in the result
of the transformation. For example, when in an expression editor, a sum node at document
level is transformed to a product node, it makes sense to reuse its whitespace extra state.
However, if the transformation is performed by simply removing the old sum and insert-
ing a fresh product node, then the extra state is lost. In such a case, an editor designer
may specify for a transformations that source nodes are reused in the result, thereby also
reusing their extra state.

More research is necessary to establish clearly in what situations extra state is vulnerable,
and also how reusing it can be maximized. Although in general it cannot be guaranteed
that extra state is always recoverable, this does not necessarily pose a problem. Because
presentation extra state generally consists of non-essential information, it is not a big
problem that in some rare cases, it is reset to a default value.

Interpretation extra state, on the other hand, may represent essential information, but by
restricting the edit behavior on presentations that have interpretation extra state, an editor
designer can protect it from accidentally getting lost. For example, the edit behavior on a
table of contents can be restricted to updates on titles, and insertion and deletion of entire
entries. For these edit operations, the reuse of extra state does not fail. Furthermore, a
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warning may be issued when document extra state is about to get lost, for example when
a user deletes a table of contents entry.

4.2.6 Conclusions

The method of handling extra state, presented in this section, applies only to extra state
that is clearly associated with a certain parent node. The method works for specifying
the whitespace extra state for token presentations as well as interpretation extra state for
editing partial presentations. However, the method of reusing is only sketched, and the
exact way in which to reuse extra state is left to the editor designer.

Extra state is vulnerable, and it is easy to create situations in which reusing it is impos-
sible, for example by allowing full text editing in a presentation that hides a large part of
the document. However, the point is that the model allows those instances of extra state
that are useful and for which a clear method of reuse can be established.

Extra state in one layer also has consequences for the other layers in the editor. In order
to reuse presentation extra state, the higher-level nodes must have a reference to their
previous presentation. Hence, the layer above must reuse the higher-level nodes when
computing the higher level (by presenting the level above it). The references to the lower
level can be considered presentation extra state of the higher level. The same thing holds
for interpretation extra state: references from the lower level to the higher level can be
considered interpretation extra state of the lower level.

Besides extra state that is attached to a certain parent node, other forms of extra state
exist. For example, when a list in the document has a fixed order, but is allowed to be
reordered by the user in the presentation, the order can be seen as either presentation or
interpretation extra state.

Since extra state arises whenever a presentation or interpretation mapping has no unam-
biguous inverse, many other kinds of extra state exist. Further research is required not
only to establish more precisely how to deal with extra state attached to a certain parent,
but also to establish other kinds of extra state, as well as methods of handling it. Fi-
nally, it would be desirable to have automatic handling of extra state for certain kinds of
presentations (or interpretations).

4.3 Duplicates in the presentation

Duplication occurs when a higher-level structure is presented on more than one lower-
level structure. An example of duplication is a chapter title that appears both in the derived
table of contents as well as in the document. But also multiple windows with (possibly
different) presentations of the same part of the document give rise to duplications.

The problem with duplicate values is that if only one of the duplicates is edited, a conflict
may arise during interpretation, and the editor needs to choose which value to use for



4.3 Duplicates in the presentation 85

Figure 4.9: The presentation of a word processor document with a table of contents.

computing the higher level. As mentioned already in Section 3.5.5, we tackle the problem
by giving priority to the changed duplicate. In case both duplicates have been edited and
yield different higher-level results, the editor can either prohibit the edit operation, or
make a default choice for one of the duplicates.

It is hard to give a precise definition of duplication of information without making ad-
ditional assumptions on the presentation mappings and level types. Moreover, even if
part of a presentation is a duplicate, the editor designer may prefer not to regard it as
such. The ”(” and ”)” tokens in Figure 4.6 are both in the presentation of theParen
node, but it is not immediately obvious to consider these tokens duplicates. Consider for
example a presentation(1+2)*(3+4) in which the middle two parentheses are deleted.
If parentheses are regarded as duplicates, the result will be the deletion of both pairs of
parentheses, yielding1+2*3+4. However, it may be considered more natural to get the
result(1+2*3+4).

In Proxima, the only layers potentially giving rise to duplicates are the evaluation and the
presentation layers. The presentation mappings for the other layers are largely predefined
and do not duplicate any structures.

Figure 4.9 shows an example of a duplicated structure in the form of a table of contents
for a word processor. On the left-hand side of the figure is a document that contains two
chapters, of which only the titles are shown. The enriched document contains both a table
of contents subtree (Toc), as well as a copy of the chapters. The table of contents subtree
follows the structure of the original document, but only contains the title of each chapter
rather than the chapter itself. To keep the figure simple, the table of contents only contains
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chapters and not sections and subsections, but in a real editor the table of contents may
reflect the entire document structure.

The evaluator maps a chapter in the document on a chapter in the enriched document,
as well as on a chapter entry in the table of contents tree, in the latter case leaving out
everything but the title. The presenter presents both the table of contents tree as well as
the chapter tree, and does not duplicate any structures. The example also involves extra
state, since a chapter is shown without its content in the table of contents. However, the
extra state is orthogonal to the presence of duplicates and can be handled as sketched in
Section 4.2.

When a user performs an update on the presentation, this results in an updated enriched
document. Updates can be either in the table of contents, or in the chapters themselves.
If the update is not in the table of contents, the document is computed from the chapters
in the enriched document, while ignoring the table of contents altogether. On the other
hand, if the table of contents tree is modified, the chapters in the enriched document tree
are ignored on interpretation, and the document is obtained from the table of contents tree
only. In this case, the chapter content is treated as interpretation extra state.

By treating the table of contents as a partial duplicate of the chapters, it is easy to support
structural updates on the table of contents, such as swapping two titles. The reuse process
for extra state takes care of swapping the chapter content correspondingly. The editor
designer only needs to specify what happens when a new title is inserted, or when an
entry is moved to a different level (e.g. a section to a subsection).

4.4 Conclusions

In this section we described the editing process of a layered editor, as well as two concepts
that play a role in the design of such an editor. The first concept is extra state, which
may have two forms. Presentation extra state is information that cannot be computed
by presenting the higher level, whereas interpretation extra state cannot be computed by
interpreting the lower level. Both forms may exist independently at one level.

When the higher and lower levels are tree structures, we can identify a form of extra state
consisting of nodes (or subtrees) that are clearly attached to a certain parent node in the
tree. Such extra state may be reused after an edit operation by looking up the parent node
in the previous value of the level (before the edit operation was applied). If this fails, a
default value is used.

The second concept that was discussed is the duplication of information in a presentation.
When a presentation contains duplicates and a user edits one (or both) of these duplicates,
a conflict may arise on interpretation. In Proxima, we resolve such conflicts by giving
priority to the edited duplicate. In case both duplicates are edited, a default choice is
made, or the edit operation is prohibited, depending on which behavior is specified by the
editor designer.



Chapter 5

Specifying a layered editor

In this chapter we develop a formal specification of a layered presentation-oriented editor,
such as Proxima. We represent the presentation mappingPresentby a functionpresent.
Givenpresent, we state a number of requirements for a corresponding functioninterpret,
which is an inverse ofpresent that maps an updated presentation back onto the document.
Furthermore, we specify how the data levels are updated after the presentation has been
edited.

Because we make only few assumptions on the presentation mapping and the level types,
the specification gives requirements forinterpret, rather than an exact specification of how
the inverse can automatically be computed for a specificpresent. The burden of defining
an interpret function that meets the requirements lies with the editor designer.

An automatically derivedinterpret is desirable, but this is not yet feasible for the com-
plex presentation functions of the use cases from Chapter 2. Examples of presentation
formalisms supporting the automatic construction of an inverse function for basic presen-
tation functions can be found in [57], [60], and [32].

We develop the specification of the layered editor by starting with a simplified editor
without layers or extra state, and then step by step adding extra functionality. Section 5.1
specifies a simple editor that consists of a single layer and does not support extra state. In
Section 5.2, the specification is extended with a general model of extra state. Section 5.3
provides a more concrete specification of extra state for tree data structures. The last step
is the addition of layers to the specification in Section 5.4. Finally, Section 5.5 informally
discusses how the specification may be adapted to handle duplications in the presentation.

87
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5.1 A single layer

First we consider a simple abstract editor consisting of a single layer between two data
levels. The higher level is the document level and the lower level is the presentation level.
In this section, we assume that the presentation mappingPresentmaps each document
onto exactly one presentation, and thus can be represented by a total functionpresent:

present :: LevelH → LevelL

Because not every value of typeLevelL is the presentation of a document is,present need
not be surjective.

Givenpresent, we will specify a total functioninterpret, which maps a lower level back
onto a higher level:

interpret :: LevelL → LevelH

Note that in contrast to the architecture description in Chapter 3,present andinterpret in
the specification are functions between values rather than edit operations.

The INTERPRESENTrequirement

A minimal condition for apresent andinterpret pair to model an editor is that presentation
of a higher level followed by interpretation should yield the original higher level. In other
words, interpret is a left inverse ofpresent. We express this with theINTERPRESENT

requirement:

l = present h ⇒ h = interpret l INTERPRESENT

Or, equivalently, using function composition:

interpret ◦ present = idLevelH

INTERPRESENTimplies injectivity ofpresent and (together with totality ofpresent) sur-
jectivity of interpret.

Note that we do not requireinterpret to be a right inverse (present ◦ interpret = idLevelL ).
The reason for this is to make it possible to interpret edit operations that are not entirely
exact but still clearly show the intended update.

For example, take a presentation function that presents a return statement by using a bold
style for the keyword:present (Return True) = “return True”. If we want to allow
a user to enter a return statement without having to add the exact styles to the text, we
must haveinterpret “Return True” = Return True. Hence,present ◦ interpret is not
the identity, sincepresent ◦ interpret “Return True” = “return True”.

Since we assumepresent is given,INTERPRESENT is a requirement forinterpret. Yet, it
is only a minimal requirement. In order to model an editor, we also want to say something
about the result ofinterpret on lower-level values outside the range ofpresent. The next
section provides such a requirement.
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Figure 5.1: A single edit step.

5.1.1 Editing

A user may perform an edit operation on either the higher level (document) or the lower
level (presentation). Because after a document update, the presentation invariant can
be restored by simply presenting the updated document, we only consider presentation-
oriented editing here. When the lower level is edited, we need to interpret the updated
lower level in order to find a new higher level, which subsequently may need to be pre-
sented again (as explained in Section 4.1).

Let levelL andlevelH denote the state of the layer at the beginning of an edit step.

levelL = present levelH

The user then updates the lower level:

levelL ; level′L

after which the editor computes the final values for the data levels:level′′L and level′′H,
in order to restore the presentation invariant. Figure 5.1 (which was also shown in the
previous chapter) illustrates the edit process.

Besides the presentation invariant, we impose several other requirements on the final lev-
els.

Firstly, if level′L is a valid presentation oflevelH, we do not wantlevelH to change because
of the edit operation, and thuslevel′′H = levelH. Because, in this section, the presentation
mapping is a function,level′L can only be a valid presentation oflevelH if it is equal to
levelL , meaning that the user did not change the lower level. However, in the next section,
when extra state is added to the model, the reason for this property becomes clear. Because
the property states that the document stays the same under an edit operation, we refer to
it asDOC-INERT.

Secondly, if a user edits the lower level in such a way thatlevel′L is a valid presentation
of some higher-level value, then the editor should not perform any further updates on the
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lower level, and the final valuelevel′′L should be equallevel′L . Analogous to the previous
property, this property is referred to asPRES-INERT.

Our final requirement specifies what happens whenlevel′L is not a valid presentation of
any higher level. In this case, the editor could simply forbid the edit operation, but a more
user-friendly solution is to regard the operation as an inexact edit operation and perform
the intended edit operation. This means that the editor chooses alevel′′H and level′′L such
that level′′L is as close as possible to thelevel′L that came from the user (and, of course,
level′′L = present level′′H).

Summarizing, if we letCompbe a program fragment that assigns new values to the data
levels, then the requirements onComp, specified as Hoare triples, are:

{true} Comp{level′′L = present level′′H} POSTCONDITION

{level′L = present levelH} Comp{level′′H = levelH} DOC-INERT

{level′L = present h} Comp{level′L = level′′L} PRES-INERT

{true} Comp{level′L “close to” level′′L} INTENDED

Note thatPRES-INERT is a special case ofINTENDED, in which “close to” is equality.
In order to prevent a conflict withPOSTCONDITION, INTENDED is slightly weaker than
POSTCONDITION.

Definition of Comp

A straightforward definition ofCompthat meets all requirements is:

Comp =̂ level′′H := interpret level′L;
level′′L := present level′′H Comp-DEF

Together withComp, the requirements above provide a specification ofinterpret. We
can prove thatPOSTCONDITION holds, and furthermore, ifINTERPRESENTholds, then
DOC-INERT andPRES-INERT can be proved as well.INTENDED cannot be proved from
INTERPRESENT, and hence is a requirement oninterpret (together withComp).

Basic Hoare logic

Before we prove the requirements, we introduce a few laws from the Hoare calculus. We
use the following law to relate Hoare triples to weakest precondition propositions:

{P} S{Q} ≡ P⇒ wp(S,Q) wp-CHAR
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Because the program only consists of assignments and a composition, we do not need to
consider termination, and moreover, we only need two laws from the weakest precondi-
tion calculus. For assignments we have:

wp( x := e , P) ≡ P[x/e] wp-:=

And for composition we have:

wp( S; T , P) ≡ wp(S, wp(T, P)) wp-;

In Section 5.4.4 we need two more laws, which we introduce here as well, for complete-
ness. We need a law for weakening the postcondition.

(Q⇒Q′) ⇒ (wp(S, Q)⇒ wp(S, Q′)) wp-MONO

And a law for combining two postconditions.

(P⇒ wp(S, Q)) ∧ (P⇒ wp(S, Q′)) ⇒ (P⇒ wp(S, Q∧Q′)) wp-AND

POSTCONDITION requirement

According towp-CHAR, {true} Comp{level′′L = present level′′H} is equivalent to:

true ⇒ wp(Comp, level′′L = present level′′H)

Proof:

wp(Comp, level′′L = present level′′H)

≡ { Comp-DEF }
wp( level′′H := interpret level′L; level′′L := present level′′H
, level′′L = present level′′H )

≡ { wp-; }
wp( level′′H := interpret level′L
, wp(level′′L := present level′′H, level′′L = present level′′H) )

≡ { wp-:= }
wp(level′′H := interpret level′L , present level′′H = present level′′H)

≡ { reflexivity of = }
wp(level′′H := interpret level′L , true)

≡ { wp-:= }
true

2
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DOC-INERT requirement

In the proofs below, we will implicitly use the equivalence between the Hoare notation
and the weakest precondition notation suggested bywp-CHAR. Hence,DOC-INERT is:

level′L = present levelH ⇒ wp(Comp, level′′H = levelH)

Proof:

wp(Comp, levelH = level′′H)

≡ { Comp-DEF }
wp(level′′H := interpret level′L; level′′L := present level′′H, levelH = level′′H)

≡ { wp-; }
wp(level′′H := interpret level′L , wp(level′′L := present level′′H, levelH = level′′H))

≡ { wp-:= }
wp(level′′H := interpret level′L , levelH = level′′H)

≡ { wp-:= }
levelH = interpret level′L

⇐ { INTERPRESENT}
level′L = present levelH

2

PRES-INERT requirement

The proof ofPRES-INERT is similar to the proof ofDOC-INERT

level′L = present h ⇒ wp(Comp, level′L = level′′L)

Proof:

In the proof, we assumelevel′L = present h:

wp(Comp, level′L = level′′L)

≡ { Comp-DEF }
wp(level′′H := interpret level′L; level′′L := present level′′H, level′L = level′′L)

≡ { wp-; }
wp(level′′H := interpret level′L , wp(level′′L := present level′′H, level′L = level′′L))

≡ { wp-:= }
wp(level′′H := interpret level′L , level′L = present level′′H)

≡ { wp-:= }
level′L = present (interpret level′L)

⇐ { assumption}
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level′L = present (interpret (present h))

≡ { INTERPRESENT}
level′L = present h}

2

INTENDED requirement

If level′L is not a valid presentation, onlyPOSTCONDITIONandINTENDED are of impor-
tance:

{true} Comp{level′L “close to” level′′L}

This requirement states thatinterpret returns a higher level such that its presentation re-
sembles what the user intended with the edit operation. Because the intention of a user
is a rather vague concept, we cannot give a formal specification of the “close to” relation
here. It is left to the editor designer to assign a meaning to it and provide aninterpret
function that meets the requirement given.

5.2 Extra state

In this section, we extend the specification of the single-layered editor with extra state
(see Section 4.2). The document level may contain interpretation extra state, whereas the
presentation may contain presentation extra state.

In the presence of extra state, a single document may have several presentations, and a
single presentation may be the presentation of several documents. This means that we
can no longer represent the relationPresentby a functionpresent between values, since
present h would have to be a set of lower-level levels. Similarly,interpret l would have to
return a set of higher-level values.

To be able to use functional representations for the presentation and interpretation map-
pings after all, we introduce an equivalence class representation for extra state. Because
two levels that only differ in extra state are in a sense equivalent, we model extra state
using an equivalence relation on the data level. The elements of an equivalence class are
equal except for their extra state. Using this equivalence class representation for extra
state, we can expresspresent and interpret as set-valued functions between equivalence
classes.

We provide two examples to illustrate the equivalence class representation for extra state.
Both examples are set in an editor for a simple programming language, for which layout
is not part of the syntax.

As an example of interpretation extra state, we take a partially presented declaration.
If we hide the right-hand side of a declaration,Decl "f" (Sum 1 2) is presented as
f = ..., which is also a presentation of, for example,Decl "f" (Product 3 4).
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Thus, the right-hand sides(Sum 1 2) and(Product 3 4) are interpretation extra state.
If we denote the extra state equivalence relation byH :: LevelH ∼ LevelH, we have
(Decl "f" (Sum 1 2)) H (Decl "f" (Product 3 4)), which means that the two
declarations are equal up to extra state. More generally, according toH a declaration is
equivalent to every declaration that has the same left-hand side identifier.

Whitespace is an example of presentation extra state. Consider an expressionSum 1 2,
which is presented as “1 + 2”. The presentation is equivalent to a string containing ‘1’,
‘+’, and ‘2’ with any configuration of whitespace. LetL :: LevelL ∼ LevelL be the
equivalence relation for presentation extra state, then, for example,“1 + 2” L “1+2”.

Because no assumptions are made about the types of the two levels, the model for extra
state is rather abstract. Section 5.3 provides a concrete representation of extra state for
tree-structured data types.

5.2.1 Equivalence classes

We start by introducing some notation for equivalence classes. A typed binary relation
R :: T ∼ T is an equivalence relation if it is reflexive, symmetric, and transitive. The
equivalence class for a valuex :: T is denoted by[x]R. Its definition is:

[x]R = {y| x R y}

The factor setT/R is the set of all equivalence classes ofR. It is a set of mutually exclusive
and jointly exhaustive subsets ofT (if we regardT as a set).

T/R = {[x]R| x :: T}

We have the following property for an equivalence relationR:

x ∈ [y]R ≡ [x]R = [y]R [ ]-MEMBER

5.2.2 An equivalence class for extra state

If several lower-level values are related to the same higher-level value by the presentation
relation, this means that, when disregarding extra state, the lower-level values are equal.
Similarly, if two higher-level values are related to the same lower value, the higher-level
values are equal up to extra state. We use an equivalence relation to express that two
values are equal up to extra state.

The two data levels give rise to two equivalence relations:H andL.

H :: LevelH ∼ LevelH and L :: LevelL ∼ LevelL

In order to specify that extra state should be reused after an update, without making any
assumptions on the level type, we use the “close to” notion from the previous section. We
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specify that an updated valuex′ contains reused extra state fromx, by requiring thatx′ is
the element of its equivalence class that is as close as possible tox.

As an example, consider an update on the presentation ofDecl "f" (Sum 1 2) from the
example above:“f = ...” ; “g = ...”. The new higher level should have left-hand
side"g" and reuse the sum. This can be specified by requiring that from the equivalence
class of declarations with left-hand side"g", we select the element that is as close as
possible toDecl "f" (Sum 1 2). The obvious solution isDecl "g" (Sum 1 2).

5.2.3 Presenting and interpreting

In the presence of extra state, both the presentation and interpretation mappings may
have several results for a single argument, and hence cannot directly be represented by
functions anymore. Regarding the mappings as relations (with the levels ordered as in
Section 4.1), we have:

Present :: LevelL ∼ LevelH
Interpret:: LevelH ∼ LevelL

If we model the extra state on the higher and lower levels with two equivalence relations
H andL, we can expressPresentandInterpretas functions between equivalence classes:

present :: LevelH/H → LevelL/L
interpret :: LevelL/L → LevelH/H

The correspondence between functionspresent and interpret, and relationsPresentand
Interpret is made explicit by the two characterizations:

l Present h≡ [l]L = present [h]H present-CHAR

h Interpret l ≡ [h]H = interpret [l]L interpret-CHAR

In the remainder of this section, we will use the functional representation.

INTERPRESENTrequirement

The INTERPRESENTrequirement changes slightly, since we use equivalence class nota-
tion to make explicit that the arguments and results are equivalence classes:

[l]L = present [h]H ⇒ [h]H = interpret [l]L INTERPRESENT

Or, equivalently:

interpret ◦ present = idLevelH/H

Similar to the previous section,INTERPRESENT states thatinterpret is a left inverse of
present and implies injectivity ofpresent as well as surjectivity ofinterpret.
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5.2.4 Editing

Similar to Section 5.1.1, we assign new values to the higher and the lower data levels
when a user edits the lower level:

[levelL ]L = present [levelH]H
levelL ; level′L

The old requirements, rewritten with equivalence classes, are:

{true} Comp{[level′′L ]L = present [level′′H]H} POSTCONDITION

{[level′L ]L = present [levelH]H} Comp{levelH = level′′H} DOC-INERT

{[level′L ]L = present [h]H} Comp{level′L = level′′L} PRES-INERT

{true} Comp{level′L “close to” level′′L} INTENDED

With extra state, theDOC-INERT requirement becomes interesting, since it is now possi-
ble to updatelevelL to a (different)level′L , which is still a valid presentation oflevelH. For
example, if whitespace is not stored in the document, and a user edits only whitespace,
then the document should remain unchanged.

In addition to the four requirements of the previous section, we need to require that ex-
tra state on both levels is reused after an update. For interpretation extra state on the
higher level, we require that from the equivalence class specified byPOSTCONDITION,
the element that is as close as possible to the original valuelevelH is selected:

{true} Comp{levelH “close to” level′′H} DOC-PRESERVE

DOC-PRESERVEis weaker than the other requirements. It specifies which element of the
equivalence class determined byPOSTCONDITION is the final value of the lower level.

On the lower level, we need a similar requirement for presentation extra state, but here
it coincides withINTENDED. Thus,INTENDED has a double function: it states that the
resulting equivalence class ofpresent must be close to the equivalence class oflevel′L , as
well as that the presentation extra state inlevel′′L must resemble the extra state inlevel′L as
much as possible.

Reusing extra state

Comprealizes a mapping between data levels, but bothpresent andinterpret are mappings
between equivalence classes on these data levels. Hence, we need a way to get from values
to equivalence classes and back. We use the[ ] function to denote the equivalence class
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of a value. For going from an equivalence class to a value, we need a selection function
that takes as an extra argument the old value of the level.

The resulting class ofpresent or interpret contains all possible extra state configurations.
From this class, we need to select an element for which the extra state resembles the
extra state of the previous value as much as possible. Thus, we introduce the function
. :: X/R → X → X, which takes an equivalence class and a previous value, and selects
the element from the class that is closest to the previous value. Intuitively,. “reuses”
the extra state from the previous value. In this section, we will only give a number of
requirements for.. Section 5.3 provides a more concrete instance.

Because we need to reuse extra state on the results ofpresent as well asinterpret, we
need two. functions: one for each level. In order to disambiguate between the two
functions, we add the corresponding relation as a subscript (e.g..H and .L ). For the
higher level we have.H :: LevelH/H → LevelH → LevelH, and for the lower level
.L :: LevelL/L → LevelL → LevelL

We require several properties of.. First of all, the equivalence class that is the result of.
must be equal to the argument equivalence class:

[[x]R . y]R = [x]R .-VALID

Furthermore, if the value argument is in the equivalence class argument, then. returns
the value argument.

[y]R = [x]R ⇒ [x]R . y = y .-IDEM

Note that, by.-VALID , we also have the reverse:[x]R . y = y ⇒ [y]R = [x]R.

Finally, if the value argument is not in the equivalence class argument, then. returns an
element of that class that is as close as possible to the value argument.

[x]R . y “close to”y .-CLOSE

Similar to theDOC-INERT and INTENDED requirements,.-IDEM is a special case of
.-CLOSE, for which “close to” is equality.

Definition of Comp

Using [ ] and. we can defineComp. The definition is split inUp andDwn to make the
proofs of the requirements more readable.

Comp =̂ Up; Dwn Comp-DEF

Up =̂ level′′H := interpret [level′L ]L .H levelH Up-DEF

Dwn =̂ level′′L := present [level′′H]H .L level′L Dwn-DEF
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Similar to the previous section, we can prove thatCompmeets thePOSTCONDITION, and,
if we assumeINTERPRESENT, alsoDOC-INERT andPRES-INERT.

POSTCONDITION requirement

The weakest precondition notation ofPOSTCONDITION is:

true ⇒ wp(Comp, [level′′L ]L = present [level′′H]H )

Proof:

wp(Comp, [level′′L ]L = present [level′′H]H )

≡ { Comp-DEF }
wp(Up; Dwn, [level′′L ]L = present [level′′H]H )

≡ { wp-; }
wp(Up, wp(Dwn, [level′′L ]L = present [level′′H]H ))

≡ { Dwn-DEF }
wp( Up

, wp(level′′L := present [level′′H]H .L level′L , [level′′L ]L = present [level′′H]H ) )

≡ { wp-:= }
wp(Up, [present [level′′H]H .L level′L ]L = present [level′′H]H )

≡ { .-VALID }
wp(Up, present [level′′H]H = present [level′′H]H )

≡ { reflexivity of = }
wp(Up, true)

≡ { Up-DEF }
wp(level′′H := interpret [level′L ]L .H levelH, true)

≡ { wp-:= }
true

2

DOC-INERT requirement

[level′L ]L = present [levelH]H ⇒ wp(Comp, levelH = level′′H)

Proof:

wp(Comp, levelH = level′′H)

≡ { Comp-DEF }
wp(Up; Dwn, levelH = level′′H)
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≡ { wp-; }
wp(Up, wp(Dwn, levelH = level′′H))

≡ { Dwn-DEF }
wp(Up, wp(level′′L := present [level′′H]H .L level′L , levelH = level′′H))

≡ { wp-:= }
wp(Up, levelH = level′′H)

≡ { Up-DEF }
wp(level′′H := interpret [level′L ]L .H levelH, levelH = level′′H)

≡ { wp-:= }
levelH = interpret [level′L ]L .H levelH

⇐ { .-IDEM }
[levelH]H = interpret [level′L ]L

≡ { INTERPRESENT}
[level′L ]L = present [levelH]H

2

PRES-INERT requirement

[level′L ]L = present [h]H ⇒ wp(Comp, level′L = level′′L)

Proof:

We assume[level′L ]L = present [h]H .

wp(Comp, level′L = level′′L)

≡ { Comp-DEF }
wp(Up; Dwn, level′L = level′′L)

≡ { wp-; }
wp(Up, wp(Dwn, level′L = level′′L))

≡ { Dwn-DEF }
wp(Up, wp(level′′L := present [level′′H]H .L level′L , level′L = level′′L))

≡ { wp-:= }
wp(Up, level′L = present [level′′H]H .L level′L)

≡ { Up-DEF }
wp( level′′H := interpret [level′L ]L .H levelH
, level′L = present [level′′H]H .L level′L )
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≡ { wp-:= }
level′L = present [interpret [level′L ]L .H levelH]H .L level′L

≡ { assumption}
level′L = present [(interpret (present [h]H ) .H levelH)]H .L level′L

≡ { INTERPRESENT }
level′L = present [([h]H .H levelH)]H .L level′L

≡ { .-VALID }
level′L = present [h]H .L level′L

≡ { assumption}
level′L = [level′L ]L . level′L

≡ { .-IDEM }
[level′L ]L = [level′L ]L

≡ { reflexivity of = }
true

2

DOC-PRESERVEand INTENDED requirements

For theDOC-PRESERVEandINTENDED requirements, we give an informal argumenta-
tion because of the informal nature of the “close to” requirement.

FromUp-DEF, we know thatlevel′′H is the result ofinterpret [level′L ]L .H levelH, which
implies levelH “close to” level′′H by .-CLOSE. Hence,DOC-PRESERVEholds.

TheINTENDED requirement is somewhat more subtle, since it has a double function. On
the one hand, it states that the equivalence class[level′′L ]L must be close to[level′L ]L . This
corresponds to theINTENDED requirement in Section 5.1.1 without extra state. In this
sense, closeness is used to express that the final lower level resembles what the user in-
tended. Thus, iflevel′L is not a valid presentation, then[level′′H]H , must be chosen such
that its presentation equivalence class[level′′L ]L is close to[level′L ]L . This part of the re-
quirement is therefore a specification ofinterpret.

On the other hand,INTENDED also states that from the equivalence class[level′′L ]L , we
want to choose an element that is as close as possible tolevel′L regarding its extra state.
This closeness is guaranteed by.-CLOSE in the same way as on the higher level for
DOC-PRESERVE.
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5.3 A wildcard representation for equivalence classes

In this section, we give a representation for equivalence classes for a simple kind of tree
data structures. We introduce a wildcard notation for representing extra state. Further-
more, we provide an instance of the reuse function (.), specific to wildcard values.

The specification for reusing extra state is a first step, and needs to be extended further to
allow reusing extra state for more edit operations. The final subsection sketches such an
extension.

5.3.1 Trees with wildcards

In a tree-structured data type, we can model extra state by leaving certain parts of the
tree undetermined. We do this by representing each extra state-part by a wildcard, which
stands for any possible value of the correct type. The functionspresent andinterpret return
a value that contains wildcards, thus leaving the extra state in the result undetermined.

For a typeT, the corresponding wildcard is denoted by*T and has type∗T (note the
different font):

data ∗T = *T

The wildcard for typeT represents any possible value of typeT. Thus, the value*Bool

represents any value from the set{True, False}, and the value*Int represents any integer.
An example shows how wildcards can be used to model extra state equivalence classes in
a data type.

Consider a simple binary tree data type:

data Tree= Bin Bool Tree Tree| Leaf Bool Int

We can recursively define a typeTree∗ in which we specify for each child type whether
or not it is extra state. If, for example, we wish to declare the boolean in theBin node and
the integer in theLeaf as extra state, we represent these children by wildcards:

data Tree∗ = Bin ∗Bool Tree∗ Tree∗ | Leaf Bool∗ ∗Int

Note that for a type without children, such asBool, the wildcard type is the same as the
original type (Bool∗ = Bool). Nevertheless, for uniformity, we replace every child type
T by a typeT∗, even ifT has no children.

For simplicity, the constructors for typeT∗ are the same as forT. A sample value of type
Tree∗ is: Bin *Bool (Leaf True *Int) (Leaf False *Int).

For a typeT, a typeT∗ specifies which parts of it are extra state. Note that for a single type
T several typesT∗ are possible: whether or not a value is extra state is not determined
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by its type, but rather by theT∗ declarations in which the value appears as a child. In
the example, a boolean in aBin node is extra state, whereas a boolean in aLeaf is not.
The editor designer specifies which parts of aLevel type are extra state by declaring an
appropriateLevel∗.

Because a wildcard represents the set of all possible values of a certain type, a value con-
taining a wildcard also represents a set of values. A value that contains several wildcards
also represents the set that is formed by taking all possible combinations of values for the
wildcards.

We use the notation[[x]] for the set of values represented by a valuex :: T∗. Thus,
[[C *Bool*Bool]] = {C True True, C True False, C False True, C False False}.
In order to obtain aT∗ value for a value of typeT, we define a functioncore :: T →
T∗, which drops all information that is masked by a wildcard in theT∗ definition. For
example, for the type definitiondata T∗ = T Int ∗Bool, we havecore (T 1 True) =
T 1 *Bool.

The root of the document cannot be extra state, because it is not a child of any constructor.
Even though it is unlikely that we want the root to be extra state, it may still be declared
as such by using a dummy root typedata R = R Root, and declare theRootchild as extra
state:data R∗ = R ∗Root.

In general, we regard a recursive first-order Haskell data typeT as:

data T = C0 T0,0 . . .T0,m0 | . . . | Cn Tn,0 . . .Tn,mn

We can specify which parts ofT are extra state by defining a wildcard typeT∗. In the
definition ofT∗, we specify for each child of each constructor ofT whether or not is extra
state. Thus, for constructorCi , child numberj is eitherT∗i, j or ∗Ti, j .

data T∗ = C0 (T∗0,0 or ∗T0,0) . . . (T∗0,m0
or ∗T0,m0

)
| . . .
| Cn (T∗n,0 or ∗Tn,0) . . . (T∗n,mn

or ∗Tn,mn
)

If we use the notation℘T for the power set ofT, the definition of[[ ]] is:

[[ ]] :: T∗ →℘T
[[∗T]] = {x| x :: T}
[[C x∗0 . . . x

∗
n]] = {C x0 . . . xn| x0 ∈ [[x∗0]] ∧ · · · ∧ xn ∈ [[x∗n]]} [[ ]]-DEF

And the definition ofcore is:

data T∗ = . . . | Ci Ui,0 . . .Ui,mi | . . . (with Ui, j = T∗i, j or ∗Ti, j )

core :: T→ T∗

core (Ci x0 . . . xmi ) = Ci x′0 . . . x
′
mi

where x′j =
{

*Ti, j , if Ui, j = ∗Ti, j

core xj , otherwise
core-DEF
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5.3.2 T∗ induces an equivalence relation on T

We can define two values of typeT to be equivalent when they are equal, or only differ
in extra state. The resulting binary relation onT is denoted by' :: T ∼ T. For the
definition of' we use the functioncore, which is uniquely determined byT∗:

x' y =̂ core x = core y '-DEF

To see that' is an equivalence relation, we need the theorem below, the simple proof of
which has been omitted:

“R is an equivalence relation”≡ ∃ f : ∀x, y : x R y ≡ ( f x = f y)

By substitutingcore for f and' for R in this theorem, we can immediately conclude that
' is an equivalence relation onT.

Without giving a proof, we mention that the equivalence classes of' can be expressed
using[[ ]] andcore.

[x]' = [[core x]] '-CLASSES

5.3.3 Reuse on wildcard types

We use wildcard types to represent the results ofpresent and interpret. Because each
wildcard represents a set of values, we need to select an element from each of these sets
to obtain a final value for the result. This selection corresponds to filling in a value of
type T for each wildcard*T in the result. The values that are filled in for the wildcards
are taken from the previous value of the level, if possible.

In this section, we define a function.* that fills in the wildcards in its first argument by
reusing values from its second argument. The type of.* is:

.* :: T∗ → T→ T

We give two examples to show how.* is used.

Consider aTokendata type with a presentation extra state tuple to denote the whitespace.
If a token for"False" with a whitespace of one line break and three spaces is updated to
a token"True", then the whitespace of the old token is reused by.* :

(Token *(Int,Int) "True") .* (Token (1,3) "False") = Token (1,3) "True"

For the second example, we take the declaration with the hidden right-hand side from
Section 5.2.2:Decl "f" (Sum 1 2). If a user renames the left-hand side in the presen-
tation tog, the result ofinterpret contains the new identifier"g", but the right-hand side
is interpretation extra state and will be a*Exp. Again, .* recovers the extra state from the
previous value:
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(Decl "g" *Exp) .* (Decl "f" (Sum 1 2)) = Decl "g" (Sum 1 2)

In some cases, reusing extra state from a previous value is not possible. For example,
when a new subtree is inserted in a level, its extra state will not be present in the previous
value of the level. Furthermore, if a level is structurally changed, even if all extra state is
present in the previous value, it may not always be possible to recover it. In case extra
state cannot be reused, we use a function to obtain a default value:default :: a∗ → a.

We give adefault function for the declaration example. If a new declaration is inserted,
its hidden right-hand side is initialized to the special expressionUndefined.

default (Decl i e) =
{

Decl i Undefined , if e = *Exp

Decl i e ,otherwise

We require that the result ofdefault is equal to its argument, except for the wildcards in
the argument. Wildcards are replaced by default values.

default x∗ ∈ [[x∗]] default-VALID

Becausedefault :: T∗ → T strongly depends on typeT, we cannot give a general
definition of the function. However, it will generally have this pattern:

default *T = default value for typeT
default (C x∗0 . . . x

∗
n) = C (default x∗0) . . . (default x∗n)

The definition is just a sketch, because it suggests that the default for a value only de-
pends on its type, whereas values of the same type that appear in different places may
have different defaults. In thedefault for declarations, as defined above, a*Exp wildcard
appearing in aDecl gets the default valueUndefined, but in other places the default may
be different.

Another difficulty in giving a general definition ofdefault is that a default value may
also depend on information elsewhere in the tree, for example when default whitespace
is computed by a pretty-printing algorithm. In that case, thedefault function requires an
extra argument containing the context of the subtree that is to be pretty-printed.

Using default we can give a first definition of.* . It takes a new value containing wild-
cards, together with an old value, and returns the new value with extra state from the old
value.

*T .* y = y
C x∗0 . . . x

∗
n .* C y0 . . . yn = C (x∗0 .* y0) . . . (x∗n .* yn)

C x∗0 . . . x
∗
n .* C′ y0 . . . ym = default (C x∗0 . . . x

∗
n) .* -DEF

This is only a basic definition of.* that recovers extra state only if the old and the new
value are structurally similar. If the constructors for the two values are different, a default
value is chosen for extra state. Although sufficient for some cases, this method of reusing,
based on structure only, is too coarse in general.
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Consider an element that is deleted from a list (e.g.[e0,e1] ; [e1]). A structure-based
reuse will recover extra state frome0 for the new valuee1, which is not the desired be-
havior. Similarly, when swapping child nodes in a tree, the extra state will not swap. And
finally, when a subtree is updated to a structurally similar subtree, such asSum e1 e2 ;

Product e1 e2, we might want the extra state of the children to be reused, which is not
possible with this basic.* .

We can handle the problems mentioned above by extending the model with a notion of
subtree identities, and defining a more powerful reuse function. Section 5.3.5 sketches
how such a function may be defined.

5.3.4 Reuse on equivalence classes

The reuse function.* defined in the previous section takes a wildcard argument of type
T∗, whereas the reuse function required forCompin Section 5.2.4 takes an equivalence
class argument. Because a wildcard type definition induces an equivalence relation, we
can use .* for .. However, since not every equivalence relation has a wildcard repre-
sentation, we thus put a restriction on the equivalence relations that we can define on the
results ofpresent andinterpret, and hence on the kind of extra state we can model.

Recall the types ofpresent andinterpret:

present :: LevelH/H → LevelL/L
interpret :: LevelL/L → LevelH/H

A wildcard typeLevel∗H induces an equivalence relation' and the correspondingcore
and .* functions. We restrict ourselves by requiring that the extra state onLevelH has a
wildcard representation. Thus, we require the existence of aLevel∗H, such thatH ≡ '. A
similar restriction applies to the lower level.

To disambiguate instances ofcore for the different levels, we use subscripts H and L
(rather than the verboseLevel∗H andLevel∗H). The equivalence classes on the higher and
lower levels can be expressed as:

h H h′ =̂ coreH h = coreH h′

l L l ′ =̂ coreL l = coreL l′ RESTRICT

Because the results in the remainder of this section apply to either level, we drop the
subscripts tocore and other level-specific functions. We useR to denote either relationH
or L. Thus, from'-CLASSES, we have:

[x]R = [[core x]] RESTRICT-CLASSES

We define. in terms of .* :

. :: T/R → T → T
[x]R . y =̂ core x .* y .-DEF
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In order for this definition to be valid, we have to verify that it returns the same result for
all elements in an equivalence class.

x R x′ ⇒ [x]R . y = [x′]R . y

Proof:

[x]R . y = [x′]R . y

≡ { .-Def }
core x .* y = core x′ .* y

⇐ { Leibniz}
core x = core x′

≡ { RESTRICT}
x R x′

2

Before we prove that. meets the.-VALID , .-IDEM, and.-CLOSE requirements from
Section 5.2.4, we introduce a more uniform wildcard type that will simplify the proofs.

The T? type

The structure of a wildcard type definitionT∗ leads to awkward proofs, because each
child of a constructor can be either a wildcard or a regular child. When pattern matching,
this means that children cannot be handled uniformly. Therefore, we introduce a uniform
construction assigning a data typeT?, which has an extra wildcard constructor, to every
typeT, including the primitive types. (Note the different star symbols: ‘?’ for the uniform
type versus ‘∗’ for the regular wildcard type.)

For a typeT:

data T = C0 T0,0 . . .T0,m0 | . . . | Cn Tn,0 . . .Tn,mn

we can construct a data typeT? by:

data T? = C0 T?0,0 . . .T
?
0,m0
| . . . | Cn T?n,0 . . .T

?
n,mn
| *T

For the binary tree from Section 5.3.1, we get:

data Tree? = Bin Bool? Tree? Tree? | Leaf Bool? Int? | *Tree

Note that the construction also applies to the primitive typesBool and Int, and extends
these types with a wildcard constructor. Hence, the possible values for the typeBool? are:
True, False, and*Bool.
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Unlike T∗ types, a data typeT has only oneT? type. BecauseT∗ andT? share the*T

constructor, anyT∗ value is also aT? value. For example, for the typeTree∗ from Sec-
tion 5.3.1, we haveLeaf True *Int :: Tree∗ as well asLeaf True *Int :: Tree?. Because
the constructors are shared, the functions.* and[[ ]], which are defined by pattern match-
ing onT∗ values, are also functions onT?.

Validity

The validity requirement follows from a more general statement onT?:

[[x]R . y]R = [x]R
≡ { [ ]-MEMBER }

[x]R . y ∈ [x]R
≡ { .-DEF andRESTRICT-CLASSES}

core x .* y ∈ [[core x]]

⇐ { takingcore x for x? }
x? .* y ∈ [[x?]]

We provex? .* y ∈ [[x?]] by structural induction onx?

Proof: Casex? = *T:

*T .* y ∈ [[*T]]

≡ { .* -DEF }
y ∈ [[*T]]

≡ { [[ ]]-DEF }
y ∈ {t| t :: T}

⇐ { y :: T }
true

Casex? = C x?0 . . . x
?
n andy = C y0 . . . yn:

The induction hypothesis isx?i .
* yi ∈ [[x?i ]]

C x?0 . . . x
?
n .* C y0 . . . yn ∈ [[C x?0 . . . x

?
n]]

≡ { .* -DEF }
C (x?0 .* y0) . . . (x?n .* yn) ∈ [[C x?0 . . . x

?
n]]

≡ { [[ ]]-DEF }
C (x?0 .* y0) . . . (x?n .* yn) ∈ {C x0 . . . xn| x0 ∈ [[x?0]] ∧ · · · ∧ xn ∈ [[x?n]]}

≡ { property of set comprehension}
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x?0 .
* y0 ∈ [[x?0]] ∧ · · · ∧ x?n .* yn ∈ [[x?n]]

≡ { Induction Hypothesis}
true

Casex? = C x?0 . . . x
?
n andy = C′ y0 . . . ym, with C 6= C′:

C x?0 . . . x
?
n .* C′ y0 . . . ym ∈ [[C x?0 . . . x

?
n]]

≡ { .* -DEF }
default(C x?0 . . . x

?
n) ∈ [[C x?0 . . . x

?
n]]

≡ { default-VALID }
true

2

Idempotency

Similar to validity, we prove idempotency by proving a more general statement onT?.

[y]R = [x]R ⇒ [x]R . y = y

≡ { [ ]-MEMBER }
y ∈ [x]R ⇒ [x]R . y = y

≡ { RESTRICT-CLASSESand.-DEF }
y ∈ [[core x]] ⇒ core x .* y = y

⇐ { takingcore x for x? }
y ∈ [[x?]] ⇒ x? .* y = y

The more general statementy ∈ [[x?]] ⇒ x? .* y = y is proven by structural induction on
x?:

Proof: Casex? = *T:

y ∈ [[*T]] ⇒ *T .* y = y

⇐ { propositional calculus}
*T .* y = y

≡ { .* -DEF }
true

Casex? = C x?0 . . . x
?
n andy = C y0 . . . yn:

The induction hypothesis isyi ∈ [[x?i ]] ⇒ x?i .
* yi = yi
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x? .* y = y

≡ { definitions ofx? andy }
C x?0 . . . x

?
n .

* C y0 . . . yn = C y0 . . . yn

≡ { .* -DEF }
C (x?0 .* y0) . . . (x?n .* yn) = C y0 . . . yn

⇐ { n times Leibniz)}
x?0 .

* y0 = y0 ∧ · · · ∧ x?n .* yn = yn

⇐ { Induction Hypothesis}
y0 ∈ [[x?0]] ∧ · · · ∧ yn ∈ [[x?n]]

⇐ { property of set comprehension}
C y0 . . . yn ∈ {C x0 . . . xn| x0 ∈ [[x?0]] ∧ · · · ∧ xn ∈ [[x?n]]}

≡ { [[ ]]-DEF }
C y0 . . . yn ∈ [[C x?0 . . . x

?
n]]

≡ { definitions ofx? andy }
y ∈ [[x?]]

Casex? = C x?0 . . . x
?
n andy = C′ y0 . . . ym, with C 6= C′:

This case does not occur, because we haveC = C′ from the assumptiony ∈ [[x?]]:

C′ = C

≡ { property of set comprehension}
C′ y0 . . . ym ∈ {C x0 . . . xn| x0 ∈ [[x?0]] ∧ · · · ∧ xn ∈ [[x?n]]}

≡ { [[ ]]-DEF }
C′ y0 . . . ym ∈ [[C x?0 . . . x

?
n]]

≡ { definitions ofx? andy }
y ∈ [[x?]]

2

Closeness

For the requirement.-CLOSE, we cannot give a formal proof because we have no formal
description of closeness. In fact, as we have seen in Section 5.3.3, our first definition of
.* does not guarantee much closeness after a structural update. The next section sketches
a .* function that can handle structural updates.
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5.3.5 Improving reuse

A reuse strategy based only on the structure of the old and new level values cannot re-
cover extra state when the level is structurally changed. In this section we sketch a more
advanced reuse strategy that is based on identities of parent nodes of extra state.

If tree nodes have identities that are preserved by edit operations, an extra state child of
a node can be recovered by looking up its value in the old tree. A definition of the new
reuse function is:

.* :: T∗ → Level→ T
Cid x∗0 . . . x

∗
n .* level = Cid x′0 . . . x

′
n

wherex′i =





x∗i .* level if x∗i 6= *t

yi if lookup id level = C y0 . . . yn

yj if lookup id level = C′ y0 . . . yn ∧ C 6= C′

∃ j : yj “is similar to” xi

default (C x∗0 . . . x
∗
n) otherwise

In contrast to.* from Section 5.3.3, this version of.* only recurses on its first argument.
The second argument (level) is the previous value of the root of the level, from which a
previous value of a node can be looked up based on its identity. In the definition, there are
four cases forx′i . The first case is whenxi is not an extra state value, and its result is the
recursive application of.* .

If xi is extra state, thenlookup id y is used to obtain the previous value of its parent. If the
lookup succeeds and the previous value has the same constructor (C), then all extra state
children can be copied from the previous value.

If the lookup returns a parent with a different constructorC′, it may still be possible to
recover its previous value, provided thatC′ y0 . . . yn has a child that represents the same
information asxi . This is expressed by the phrase “is similar to” in the third case of the
definition. An example illustrates this case.

Consider an expression editor with an edit operation that transforms a sum into a product.
Both sums and products have an extra state child that represents the whitespace in the
presentation. For(Productid0 ∗ e1 e2) .* y, we havelookup id0 y = Sumid0 extra0 e1 e2,
in which extra0 represents the whitespace. It makes sense to reuse the whitespace from
the old sum, because of the similarity between the presentation of the sum and the prod-
uct. Hence, the third case applies, and we havej = 0, which yields the final result
Productid0 extra0 e1 e2.

The last case of the definition applies if the extra state from the old value cannot be reused
or if lookup fails. In that case, extra state is set to a default value.

Note that since the recursion is only on the first argument, the type is slightly different
from the reuse function from Section 5.3.3, which is.* :: T∗ → T → T. However,
for the application on the root of the level,T is equal toLevel, yielding the type .* ::
Level∗ → Level→ Level.
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The .* from this section is able to reuse extra state after a structural update, such as
moving a subtree or deleting from a list. Moreover, it also allows reuse when a node is
updated to a similar node that has the same kind of extra state. However, it does require
that editing preserves node identities.

5.4 A composite layer

In order to describe the architecture of Proxima, we refine the single-layer model from the
previous sections to accommodate multiple layers. To make it explicit thatpresent and
interpret are composite functions in this section, we denote the functions bypresentC and
interpretC.

We assume thatpresentC is given and that it can be split into componentspresentH and
presentL . For these components, we recursively obtain specifications forinterpretH and
interpretL . The specification forinterpretC is a composition ofinterpretH andinterpretL .

Instead of splitting a layer inton components, we split it in two: an upper and a lower layer
with a middle level in between. The upper layer may itself be a composite layer, whereas
the lower layer is an atomic layer, such as specified in the previous section. Section 5.4.3
explains the reason for this distinction.

It turns out that if we split the presentation mapping and constructinterpretH andinterpretL
according to the specification, this does not always result in a valid specification for
interpretC. Hence, we provide extra requirements on the components to ensure that the
specification is valid.

5.4.1 Composite presentC and interpretC

Before we show the compositions forpresentC andinterpretC, we first take a look at what
the compositions look like if we view the mappings as relationsPresentC andInterpretC
rather than as functions between equivalence classes. The relation view is somewhat
simpler because it does not explicitly refer to the various extra state equivalence classes
in the composition.

Composite PresentC and InterpretC

For the specification of a composite interpretation mapping, we split (or decompose) the
presentation mapping, whereas we compose the interpretation mapping. However, from a
formal point of view there is no distinction between splitting and composing, since in both
cases the composite relation is the relational composition of two other relations. Hence,
we ignore this distinction forPresentC andInterpretC.
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The components ofPresentC andInterpretC are

PresentL :: LevelL ∼ LevelM PresentH :: LevelM ∼ LevelH
InterpretH :: LevelH ∼ LevelM InterpretL :: LevelM ∼ LevelL

Instead of using the notationPresentL ◦ PresentH andInterpretL ◦ InterpretH, we explic-
itly write out the relational compositions, yielding:

PresentC :: LevelL ∼ LevelH
l PresentC h ≡ ∃m : l PresentL m∧m PresentH h

and

InterpretC :: LevelH ∼ LevelL
h InterpretC l ≡ ∃m : h InterpretH m∧m InterpretL l

Composite presentC and interpretC

We can splitpresentC and composeinterpretC, similar toPresentC and InterpretC with
the difference that all relations are now represented by functions between equivalence
classes. However, even if two relations are both functions between equivalence classes,
this does not guarantee that their composition is also function between equivalence classes.
Hence, the composite definitions will need additional restrictions to be valid. We will
provide these restrictions in the form of two extra requirements for the components of
presentC andinterpretC.

We assume the existence ofpresentC :: LevelH/CH → LevelL/CL, which, for a certain type
LevelM (and certain equivalence classesHH, HL, LH, andLL), can be decomposed into
presentH :: LevelH/HH → LevelM/HL andpresentL :: LevelM/LH → LevelL/LL .

In the types of thepresentC, presentH andpresentL , there are six different equivalence
relations: both the upper and lower layer have equivalence relations on their respective
upper and lower levels (HH, HL, LH, andLL), and frompresentC we haveCH andCL.
Although the type of the middle level (LevelM ) is equal for both layers, the equivalence
relations are likely to be different (HL 6= LH) because the presentation extra state of the
upper layer is most likely different from the interpretation extra state of the lower layer.
Similarly, onLevelH andLevelL , the equivalence relations forpresentC (CH andCL) do
not have to be equal to the relations of the two component layers (HH andLL). Thus, in
total, we have the six equivalence relations that are shown in Figure 5.2.

We cannot use function composition to composepresentH and presentL , because the
equivalence classes on the middle do not match (LevelM/HL versusLevelM/LH ). Hence, we
write the composition as a relational composition, similar toPresentC. (Note the reversed
order of the types, as was explained in Section 4.1.)

presentC :: LevelH/CH → LevelL/CL

[l]CL = presentC [h]CH ≡ ∃m : [l]LL = presentL [m]LH

∧ [m]HL= presentH [h]HH present-COMPOSE
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LevelH/CH LevelH/HH
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²²

presentC

²²

LevelM/HL LevelM/LH

presentL
²²

LevelL/CL LevelL/LL

Figure 5.2: Equivalence relations in a composite layer.

For the componentspresentL and presentH, we have a specification ofinterpretL ::
LevelL/LL → LevelM/LH andinterpretH :: LevelM/HL → LevelH/HH , which we compose to
defineinterpretC:

interpretC :: LevelL/CL → LevelH/CH

[h]CH = interpretC [l]CL ≡ ∃m : [h]HH = interpretH [m]HL

∧ [m]LH = interpretL [l]LL interpret-COMPOSE

Although we cannot use function composition, we can use Kleisli composition on set-
valued functions to give an equivalent point-free definition of the compositions:

presentC ◦ [ ]CH = (presentL ◦ [ ]LH ) ¦ (presentH ◦ [ ]HH )
interpretC ◦ [ ]CL = (interpretH ◦ [ ]HL) ¦ (interpretL ◦ [ ]LL)

Before we discuss the restrictions we need for both compositions to be valid, we give a
simple example, which shows that equivalence relations on the same level can be different.
Consider a functionpresentC with its type written in the wildcard style from Section 5.3.

presentC :: (Int, ∗Int)→ Int
presentC (x, y) = x

BecausepresentC = presentC ◦ id, we can splitpresentC as follows:

presentL :: (Int, ∗Int)→ Int presentH :: (Int, Int)→ (Int, Int)
presentL (x, y) = x presentH (x, y) = (x, y)

The equivalence relationLH for the argument ofpresentL is (the relation induced by)
(Int, ∗Int), whereasHL is (Int, Int). Furthermore,CH is (Int, ∗Int), andHH is (Int, Int).
Hence,LH 6= HL andCH 6= HH. A similar example can be constructed to show thatCL
may be different fromLL.
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Restrictions on the components

The assumed conditionpresent-COMPOSEputs a restriction on the componentspresentH
and presentL . We can only split the presentation mapping into components for which
present-COMPOSEhold. However, it turns out that even ifpresent-COMPOSEholds for
presentH and presentL , and interpretH and interpretL are constructed according to the
specification, this does not guarantee thatinterpret-COMPOSEis valid for the composition.
As a result, without any additional restrictions, the specification ofinterpretC may not
always be valid.

Moreover, even if the definitioninterpret-COMPOSEis valid, which implies that the com-
position of interpretH and interpretL can be viewed as a function between equivalence
classes (i.e.interpretC :: LevelL/CL′ → LevelH/CH′ ), this does not necessarily imply that
these classes are equal to theCH andCL classes inpresentC :: LevelH/CH → LevelL/CL.
In case the classes are not equal, this also results in an invalid specification.

We provide an example of the latter case (when the equivalence classes forinterpretC are
different from presentC). ConsiderpresentC = idInt, which is split into thepresentH
andpresentL below. TheinterpretH andinterpretL provided meet the requirements of the
previous section.

presentL :: (∗Int, Int)→ Int presentH :: Int→ (Int, Int)
presentL (∗Int, y) = y presentH x = (x, x)
interpretL :: Int→ (∗Int, Int) interpretH :: (Int, Int)→ Int
interpretL y = (∗Int, y) interpretH (x, y) = x

By interpret-COMPOSE, we haveinterpretC [0]CL = [0]CH , if we take(0,0) for the mid-
dle level m. Similarly, for m = (1,0), we get interpretC [0]CL = [1]CH , and hence,
[0]CH = [1]CH . However, becausepresentC is the identity function,CH is the equality
relation, which implies[0]CH 6= [1]CH . Thus, even thoughinterpretC is a mapping between
equivalence classes, it is not a mapping between the equivalence classes ofpresentC.

Without showing the details of their derivation, we introduce two explicit conditions,
which guarantee thatpresent-COMPOSE and interpret-COMPOSE hold, as well as that
the CL andCH classes of both definitions are equal. First, we define an auxiliary func-
tion I . The applicationI m denotes the set of all higher-level elements that are in the
interpretation of some member of theLH equivalence class ofm.

I :: LevelM →℘LevelH
I m = {h| ∃m′ ∈ [m]LH : [h]HH = interpretH [m′]HL} I-DEF

The two conditions are:

h,h′ ∈ I m∧ [m′]HL = presentH [h]HH ⇒
∃m′′ ∈ [m′]LH : [m′′]HL = presentH [h′]HH present-MATCH

and
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h,h′ ∈ I m∧ [h]HH = interpretH [m′]HL ⇒
∃m′′ ∈ [m′]LH : [h′]HH = interpretH [m′′]HL interpret-MATCH

The interpret-MATCH condition guarantees that we can represent the composition of
interpretH and interpretL by a mapping between equivalence classes, which implies va-
lidity of interpret-COMPOSE. On the other hand,present-MATCH implies validity of
present-COMPOSEand guarantees that theCH andCL classes ofpresent-COMPOSEare
equal toCH andCL of interpret-COMPOSE. In the remainder of this section we assume
present-MATCH andinterpret-MATCH.

5.4.2 The INTERPRESENTrequirement

The INTERPRESENT requirement holds for a composition if it holds for the upper and
lower layer.

[l]CL = presentC [h]CH ⇒ [h]CH = interpretC [l]CL INTERPRESENT

The proof is simple:

[h]CH = interpretC [l]CL

≡ { interpret-COMPOSE}
∃m : [m]LH = interpretL [l]LL ∧ [h]HH = interpretH [m]HL

⇐ { INTERPRESENTfor higher and lower layers}
∃m : [l]LL = presentL [m]LH ∧ [m]HL = presentH [h]HH

≡ { present-COMPOSE}
[l]CL = presentC [h]CH

5.4.3 An inductive definition of presentC and interpretC

In this section, we give inductive versions ofpresent-COMPOSEandinterpret-COMPOSE

for an editor consisting ofn layers. The building blocks for the composite layer aren+ 1
data levels andn pairs of presentation and interpretation functions with their correspond-
ing equivalence relations:

present i :: Leveli−1/Hi
→ Leveli/Li

interpret i :: Leveli/Li
→ Leveli−1/Hi

BecauseLevel0 is the document andLeveln the presentation, the top layer consists of
present1 and interpret1, whereas the lowest layer consists ofpresentn and interpretn. A
composite layer consists of two composite functions:presentC,i andinterpretC,i .

Layers are composed in a “top-associative” way: the higher component layer may itself
be a composite layer, whereas the lower component is an atomic layer. The reason for this
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Figure 5.3: Indices in a composite layer.

choice stems from the order in which the updated lower level is computed. If we abuse
the notation for function composition to denote the composition of layer functions, we
can sketch the computation:

(presentn ◦ presentn−1 ◦ · · · ◦ present1 ◦ interpret1 ◦ · · · ◦ interpretn−1 ◦ interpretn)

The most logical way to decompose this computation is by splitting it intopresentn,
interpretn, and (presentn−1 ◦ · · · ◦ interpretn−1). This corresponds to splitting off an
atomic layer at the bottom of a composite layer.

Figure 5.3 shows an overview of the levels,present functions, and equivalence relations
that appear in a composite layer. The left-hand side shows the view from Figure 5.2
with relative subscripts H, M, and L, whereas the right-hand side shows the inductively
defined versions with numbered subscripts. The figure does not showinterpret because it
is similar topresent.

In a composite layer, there are six equivalence relations. The two equivalence relations
that are induced by the composite layer areCHi andCLi . The upper layer is the composi-
tion of the firsti−1 layers, and hence its equivalence relations areCHi−1 andCLi−1. For
the lower layer, the equivalence relations are theHi andLi relations that are associated
with presenti andinterpreti .

The inductive definition ofpresentC,i is right-associative, whereasinterpretC,i is left-
associative. The reason for this difference is that in the computation, the order of the
present i functions is the reverse of the order of theinterpret i functions. The basis for both
definitions isid. In the definition, we use the point-free style for the composite functions:

presentC,i :: Level0/CHi
→ Leveli/CLi

presentC,0 = id
presentC,i ◦ [ ]CHi

= (present i ◦ [ ]Hi
) ¦ (presentC,i−1 ◦ [ ]CHi−1

)
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Figure 5.4: Single edit step in a composite layer.

interpretC,i :: Level0/CHi
→ Leveli/CLi

interpretC,0 = id
interpretC,i ◦ [ ]CLi

= (interpretC,i−1 ◦ [ ]CLi−1
) ¦ (interpret i ◦ [ ]Li

)

The equivalence relations for the basis (CH0 andCL0) both are the equality relation (=).
The reason for this is that the presentation function at the basis (present0) is the identity,
which leaves no room for extra state since each element inLevel0 is mapped onto itself.
Hence, all equivalence classes are singleton sets, which correspond to the equivalence
classes of the equality relation.

Because indices make proofs harder to read, and because at any time we only regard two
layers and three levels, we use the notation from the left-hand side of Figure 5.3 in the
rest of this section.

5.4.4 Editing

BesideslevelH andlevelL , a composite layer also keeps track of the middle level,levelM .
Before the edit operation we know that[LevelL ]CL = presentC[LevelH]CH . By present-
COMPOSE, this implies there exists a middle levelm for which we have[levelL ]LL =
presentL [m]LH and [m]HL = presentH [levelH]HH . Although not explicitly denoted, we
assume thatlevelM is thism.
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Before the lower level is updated, we have:

[levelL ]LL = presentL [levelM ]LH ∧ [levelM ]HL = presentH [levelH]HH

levelL ; level′L

After the lower-level update, the lower layer computes an intermediate valuelevel′M , from
which the higher layer (which may be a composite layer itself) computeslevel′H. At the
top, level′H is assigned tolevel′′H, which is subsequently presented ontolevel′′M . Finally,
level′′M presented ontolevel′′L .

Figure 5.4 sketches the updates to the various data levels. Note that the figure is just a
sketch, sincepresent and interpret are functions between equivalence classes instead of
values (as the figure might suggest).

Requirements

Apart from a few changed subscripts, the requirements forlevel′′H andlevel′′L are equal to
the requirements for the single-layered editor in Section 5.2.4. The only difference is that
we explicitly added the precondition of the edit step ([levelL ]CL = presentC [levelH]CH ) to
the precondition ofDOC-INERT. We need it here, becauseDOC-INERT can only hold if
the middle level is a valid presentation oflevelH.

{true} Comp{[level′′L ]CL = presentC [level′′H]CH} POSTCONDITION

{
[levelL ]CL = presentC [levelH]CH ∧
[level′L ]CL = presentC [levelH]CH

}
Comp{levelH = level′′H} DOC-INERT

{[level′L ]CL = presentC [h]CH} Comp{level′L = level′′L} PRES-INERT

{true} Comp{levelH “close to” level′′H} DOC-PRESERVE

{true} Comp{level′L “close to” level′′L} INTENDED

Definition of Comp

The inductive definition ofCompreads:

Comp0 =̂ level′′H := level′H
Compn =̂ Up; Compn−1; Dwn Comp-DEF

Up =̂ level′M := interpretL [level′L ]LL .LH levelM Up-DEF

Dwn =̂ level′′L := presentL [level′′M ]LH .LL level′L Dwn-DEF

We prove thatCompmeets the first three requirements.
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5.4.5 POSTCONDITION requirement

In wp notation, thePOSTCONDITION is:

true ⇒ wp(Compn, [level′′L ]CL = presentC [level′′H]CH) POSTCONDITION

Proof: We provePOSTCONDITIONby induction over the number of layersn.

Casen = 0:

Filling in the base cases forpresentC, the data levels, and relationsCH andCL yields:

true ⇒ wp(Comp, [level′′0 ]= = id [level′′0 ]=)

which holds because it is equivalent totrue ⇒ wp(Comp, true).

Casen> 0:

The induction hypothesis is:

true ⇒ wp(Compn−1, [level′′M ]HL = presentH [level′′H]HH ) I.H.

In the proof, we need the property that the lower presentation of a valid middle level is in
the result of the composite presentation:

[m]HL = presentH [h]HH ⇒ [presentL [m]LH .LL l]CL = presentC [h]CH

It has a simple proof:

[presentL [m]LH .LL l]CL = presentC [h]CH

≡ { present-COMPOSE}
∃m′ : [presentL [m]LH .LL l]LL = presentL [m′]LH ∧ [m′]HL = presentH [h]HH

⇐ { let m′ = m }
[presentL [m]LH .LL l]LL = presentL [m]LH ∧ [m]HL = presentH [h]HH

≡ { .-VALID }
presentL [m]LH = presentL [m]LH ∧ [m]HL = presentH [h]HH

≡ { reflexivity of = }
[m]HL = presentH [h]HH

Using this result, we provePOSTCONDITION.

wp(Comp, [level′′L ]CL = presentC [level′′H]CH)

≡ { Comp-DEF }
wp(Up; Compn−1; Dwn, [level′′L ]CL = presentC [level′′H]CH)



120 5 Specifying a layered editor

≡ { wp-; }
wp(Up; Compn−1, wp(Dwn, [level′′L ]CL = presentC [level′′H]CH))

≡ { Dwn-DEF }
wp(Up; Compn−1, wp( level′′L := presentL [level′′M ]LH .LL level′L

, [level′′L ]CL = presentC [level′′H]CH) )

≡ { wp-:= }
wp(Up; Compn−1, [presentL [level′′M ]LH .LL level′L ]CL = presentC [level′′H]CH)

⇐ { wp-MONO and previous result}
wp(Up; Compn−1, [level′′M ]HL = presentH [level′′H]HH )

≡ { wp-; }
wp(Up, wp(Compn−1, [level′′M ]HL = presentH [level′′H]HH ))

⇐ { wp-MONO andI.H. }
wp(Up, true)

≡ { Up-DEF }
wp(level′M := interpretL [level′L ]LL .LH levelM , true)

≡ { wp-:= }
true

2

5.4.6 DOC-INERT requirement

[levelL ]CL = presentC [levelH]CH ∧ [level′L ]CL = presentC [levelH]CH ⇒
wp(Compn, levelH = level′′H) DOC-INERT

Besides thepresent-Match andinterpret-Match conditions from Section 5.4.1, we need
an additional condition forDOC-INERT to hold. FromINTERPRESENT, we know that if
level′L is a presentation oflevelH, thenlevelH is in the interpretation oflevel′L . Thus, there
exists a middle levelm in the interpretation oflevel′L , which haslevelH in its interpreta-
tion. However, the mere existence of such a middle level does not guarantee that this is
the middle level resulting fromComp.

The problem lies in the fact thatlevel′M is selected by.LH from anLH class of elements,
instead of anHL class. Thus, reusing extra state fromlevelM could causelevel′M to end up
in anHL class that does not containlevelM , which would breakDOC-INERT. We avoid
the problem by requiring that the result of.LH is in the correctHL class, if possible:

[m′]HL = [m]HL ⇒ [[m′]LH .LH m]HL = [m]HL ORTHOGONAL
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If both HL andLH are described by the wildcard types from Section 5.3,ORTHOGONAL

holds.

Proof:

The proof ofDOC-INERT is by induction overn.

Casen = 0:

[level0]= = id [level0]= ∧ [level′0]= = id [level0]= ⇒ wp(Comp0, level0 = level′′0)

wp(Comp0, level0 = level′′0)

≡ { Comp-DEF andLevelH ≡ Level0 }
wp(level′′0 := level′0, level0 = level′′0)

≡ { wp-:= }
level0 = level′0

⇐ { property of equivalence class and symmetry of= }
level′0 ∈ [level0]=

⇐ { [ ]-MEMBER }
[level0]= = [level0]= ∧ [level′0]= = [level0]=

≡ { definition of id }
[level0]= = id [level0]= ∧ [level′0]= = id [level0]=

Casen> 0:

For the inductive case, we assume the antecedent of the implication. The first con-
junct ([levelL ]CL = presentC [levelH]CH ) has already been rewritten according topresent-
COMPOSEand the implicit assumption that the middle level betweenlevelH andlevelL is
levelM :

[levelL ]LL = presentL [levelM ]LH ∧ [levelM ]HL = presentH [levelH]HH ∧
[level′L ]L = presentC [levelH]H

In the proof, we need the existence of anm0 that is in the equivalence class of the inter-
pretation oflevel′L and at the same time in the equivalence class of the presentation of
levelH:

[m0]LH = interpretL [level′L ]LL ∧ [m0]HL = presentH [levelH]HH

⇐ { let m0 be them from the quantification}
∃m : [m]LH = interpretL [level′L ]LL ∧ [m]HL = presentH [levelH]HH

≡ { INTERPRESENT}
∃m : [level′L ]LL = presentL [m]LH ∧ [m]HL = presentH [levelH]HH
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≡ { present-COMPOSE}
[level′L ]CL = presentC [levelH]CH

≡ { assumption}
true

From the precondition, we knowpresentH [levelH]HH = [levelM ]HL , which, together with
[m0]HL = presentH [levelH]HH , implies thatm0 and levelM are in the sameHL class:
[m0]HL = [levelM ]HL . This result is needed to applyORTHOGONAL.

For the inductive step, we have the following induction hypothesis:

[levelM ]HL = presentH [levelH]HH ∧ [level′M ]HL = presentH [levelH]HH ⇒
wp(Compn−1, levelH = level′′H) I.H.

Note that the first conjunct in the antecedent of the induction hypothesis is already satis-
fied due to the assumption above.

Because we assumed the antecedent ofDOC-INERT (in weakest precondition notation),
we complete the proof of the implication by proving its conclusion.

wp(Compn, levelH = level′′H)

≡ { Comp-DEF }
wp(Up; Compn−1; Dwn, levelH = level′′H)

≡ { wp-; }
wp(Up; Compn−1, wp(Dwn, levelH = level′′H))

≡ { Dwn-DEF }
wp( Up; Compn−1

, wp(level′′L := presentL [level′′M ]LH .LL level′L , levelH = level′′H) )

≡ { wp-:= }
wp(Up; Compn−1, levelH = level′′H)

≡ { wp-; }
wp(Up, wp(Compn−1, levelH = level′′H))

⇐ { wp-MONO, I.H., and[levelM ]HL = presentH [levelH]HH }
wp(Up, [level′M ]HL = presentH [levelH]HH )

≡ { Up-DEF }
wp( level′M := interpretL [level′L ]LL .LH levelM
, [level′M ]HL = presentH [levelH]HH )

≡ { wp-:= }
[interpretL [level′L ]LL .LH levelM ]HL = presentH [levelH]HH
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≡ { [m0]LH = interpretL [level′L ]LL }
[[m0]LH .LH levelM ]HL = presentH [levelH]HH

≡ { ORTHOGONAL and[m0]HL = [levelM ]HL }
[m0]HL = presentH [levelH]HH

≡ { [m0]HL = presentH [levelH]HH }
presentH [levelH]HH = presentH [levelH]HH

≡ { symmetry of= }
true

2

5.4.7 PRES-INERT requirement

[level′L ]CL = presentC [h]CH ⇒ wp(Compn, level′L = level′′L) PRES-INERT

Similar toDOC-INERT, we cannot guaranteePRES-INERT without assuming extra condi-
tions. It turns out that we can provePRES-INERT if we assumepresent-MATCH together
with a reversedORTHOGONAL, in which theHL andLH relations are swapped. However,
becauseORTHOGONAL refers to.LH , its reverse would have to refer to.HL , which does
not exist. The reason for this is the association order inComp: reuse in the presentation
direction of the higher layer is the result of the combined effect of the.LL functions of the
components of the higher layer. Thus, the only way to specify a reversedORTHOGONAL

is as a condition on the composite layer:

[level′L ]LH = [m]LH ⇒ wp(Compn−1, [level′′L ]LH = [m]LH ) ORTHOGONAL-R

Because this condition is rather complex, we introduce a stronger conditionABSORPTION

that is easier to verify.ABSORPTIONimpliespresent-MATCH and interpret-MATCH, as
well asORTHOGONAL andORTHOGONAL-R.

[m]LH = [m′]LH ⇒ [m]HL = [m′]HL ABSORPTION

The condition states that twoLevelM values that are in the sameLH equivalence class of
the lower layer, also share theHL equivalence class of the higher layer. Thus, interpre-
tation extra state on the middle level is absorbed by presentation extra state on that level,
hence the name.

As an example ofABSORPTIONfor the wildcard types of Section 5.3, consider theLH
relation represented by(Int, (Int, ∗Int)). This relation is absorbed by anHL relation
(Int, (∗Int, ∗Int)), and also by(Int, ∗Int).

For wildcard types,ABSORPTION holds if and only if for all possible values of type
LevelM , any node that is a* according to the wildcard definition ofLH, is either also a*
according toHL or has an ancestor that is a*.
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More generally,ABSORPTIONholds when eachHL equivalence class is a union ofLH
classes. A result ofABSORPTION is thatCH is equal toHH. For the proof ofPRES-
INERT, ABSORPTIONimplies that the intermediate level that results from interpreting a
valid lower level, is itself also valid, which allows us to applyPRES-INERT inductively to
the higher layer.

Because ofABSORPTIONwe haveCH = HH. If we denote this with the explicit indices
from Figure 5.3, we getCHi = CHi−1. Furthermore, sinceCH0 = (=), this means
thatCHi = (=), and, thus, no composite layer has interpretation extra state onLevel0.
This is clearly not a desirable situation, and hence we do not assumeABSORPTIONfor
the top-most combination. Nevertheless, the result is still quite restrictive, since now the
interpretation extra state relationCHi for each composite layer will be equal to the inter-
pretation extra state relationH1 for present1. Future research should determine whether
this is a problem. If it is, a less-strict condition needs to be established.

Because we do not assumeABSORPTIONat the top-most composite layer, we have to give
a separate proof for casen = 1 of PRES-INERT, in which we do not use the condition.
Furthermore, in the proof ofDOC-INERT, we cannot useABSORPTIONto imply present-
MATCH, interpret-MATCH, andORTHOGONAL for casen = 1. However, since forn = 1,
these three conditions trivially hold, we do not need to assumeABSORPTIONfor this case.

Proof: In the inductive step of the proof, we need the fact that the lower level is not
affected by the assignments of the higher layer. Therefore, we strengthen the pre- and
postcondition ofPRES-INERT:

[level′L ]CL = presentC [h]CH ∧ level′n+1 = x ⇒
wp(Compn, level′L = level′′L ∧ level′n+1 = x)

Casen = 0: We omit the trivial proof of this case.

Casen = 1:

For n = 1, we havelevelH = levelM = level0 and levelL = level1. Furthermore, since
presentH = presentC,0 = id andHH andHL both are(=), we havepresentC [h]CH =
presentL [h]LH . Thus, we rewrite the requirement to:

[level′L ]LH = presentL [h]LH ∧ level′2 = x ⇒
wp(Comp1, level′L = level′′L ∧ level′2 = x)

First, we prove the first conjunct of the postcondition, for which we only need to assume
half of the antecedent[level′L ]LL = presentL [h]LH . The proof is similar to the proof of
PRES-INERT for a single layer (see Section 5.2.4).

wp(Comp1, level′L = level′′L)

≡ { Comp-DEF }
wp(Up; Comp0; Dwn, level′L = level′′L)

≡ { wp-; }
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wp(Up; Comp0, wp(Dwn, level′L = level′′L))

≡ { Dwn-DEF }
wp(Up; Comp0, wp(level′′L := presentL [level′′M ]LH .LL level′L , level′L = level′′L))

≡ { wp-:= }
wp(Up; Comp0, level′L = presentL [level′′M ]LH .LL level′L)

≡ { wp-; }
wp(Up, wp(Comp0, level′L = presentL [level′′M ]LH .LL level′L))

≡ { Comp-DEF andLevelM ≡ Level0 }
wp(Up, wp(level′′M := level′M , level′L = presentL [level′′M ]LH .LL level′L))

≡ { wp-:= }
wp(Up, level′L = presentL [level′M ]LH .LL level′L)

≡ { Up-DEF }
wp( level′M := interpretL [level′L ]LL .LH levelM
, level′L = presentL [level′M ]LH .LL level′L )

≡ { wp-:= }
level′L = presentL [interpretL [level′L ]LL .LH levelM ]LH .LL level′L

≡ { assumption}
level′L = presentL [interpretL (presentL [h]LH ) .LH levelM ]LH .LL level′L

≡ { INTERPRESENT }
level′L = presentL [[h]LH .LH levelM ]LH .LL level′L

≡ { .-VALID }
level′L = presentL [h]LH .LL level′L

≡ { assumption}
level′L = [level′L ]LL .LL level′L

≡ { .-IDEM }
[level′L ]LL = [level′L ]LL

≡ { reflexivity of = }
true

This completes the proof of the first conjunct of the postcondition. For the second con-
junct, we need to prove:

[level′L ]LH = presentL [h]LH ∧ level′2 = x ⇒
wp(Comp1, level′2 = x)
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which trivially holds, becauseComp1 only performs assignments on levels 0 and 1.
Hence, bywp-AND, we conclude:

[level′L ]LH = presentL [h]LH ∧ level′2 = x ⇒
wp(Comp1, level′L = level′′L ∧ level′2 = x)

Casen> 1:

Similar to then = 1 case, prove the first part of postcondition conjunct:

[level′L ]CL = presentC [h]CH ∧ level′n+1 = x ⇒ wp(Compn, level′L = level′′L)

We assume half of the antecedent:[level′L ]CL = presentC [h]CH .

From the assumption, we know there exists anm0 that is in the presentation ofh, and that
haslevel′L in its presentation:

[level′L ]LL = presentL [m0]LH ∧ [m0]HL = presentH [h]HH

≡ { let m0 be them from the quantification}
∃m : [level′L ]LL = presentL [m]LH ∧ [m]HL = presentH [h]HH

≡ { present-COMPOSE}
[level′L ]CL = presentC [h]CH

≡ { assumption}
true

Furthermore, by the first part of this conjunct andINTERPRESENTon the lower layer, we
also have[m0]LH = interpretL [level′L ]LL

We need two intermediate results for the inductive step of the proof. The first one is:

[interpretL [level′L ]LL .LH levelM ]HL = presentH [h]HH

= { [m0]HL = presentH [h]HH }
[interpretL [level′L ]LL .LH levelM ]HL = [m0]HL

⇐ { ABSORPTION}
[interpretL [level′L ]LL .LH levelM ]LH = [m0]LH

≡ { [m0]LH = interpretL [level′L ]LL }
[[m0]LH .LH levelM ]LH = [m0]LH

≡ { .-VALID }
[m0]LH = [m0]LH

≡ { reflexivity of = }
true
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A corollary of this proof is that[interpretL [level′L ]LL .LH levelM ]LH = [m0]LH , which is
used in the proof of the second intermediate result:

level′L = presentL [interpretL [level′L ]LH .LH levelM ]LH .LL level′L

level′L
= { .-IDEM and[level′L ]LL = [level′L ]LL }

[level′L ]LL .LL level′L
= { [level′L ]LL = presentL [m0]LH }

presentL [m0]LH .LL level′L
= { corollary: [interpretL [level′L ]L .LH levelM ]LH = [m0]LH }

presentL [interpretL [level′L ]LL .LH levelM ]LH .LL level′L

Now we can prove the inductive step using the induction hypothesis:

[level′M ]HL = presentH [h]HH ∧ level′L = x ⇒
wp(Compn−1, level′M = level′′M ∧ level′L = x) I.H.

wp(Compn, level′L = level′′L)

≡ { Comp-DEF }
wp(Up; Compn−1; Dwn, level′L = level′′L)

≡ { wp-; }
wp(Up; Compn−1, wp(Dwn, level′L = level′′L))

≡ { Dwn-DEF }
wp( Up; Compn−1

, wp(level′′L := presentL [level′′M ]LH .LL level′L , level′L = level′′L) )

≡ { wp-:= }
wp(Up; Compn−1, level′L = presentL [level′′M ]LH .LL level′L)

⇐ { wp-MONO and Leibniz}
wp(Up; Compn−1, level′M = level′′M ∧ level′L = presentL [level′M ]LH .LL level′L)

≡ { wp-; }
wp(Up, wp( Compn−1

, level′M = level′′M ∧ level′L = presentL [level′M ]LH .LL level′L) )

⇐ { wp-MONO andI.H. }
wp(Up, [level′M ]HL = presentH [h]HH ∧ level′L = presentL [level′M ]LH .LL level′L)

≡ { Up-DEF }
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wp( level′M := interpretL [level′L ]LL .LH levelM
, [level′M ]HL = presentH [h]HH ∧ level′L = presentL [level′M ]LH .LL level′L )

≡ { wp-:= }
[interpretL [level′L ]LL .LH levelM ]HL = presentH [h]HH ∧
level′L = presentL [interpretL [level′L ]LL .LH levelM ]LH .LL level′L

≡ { the two intermediate results we just proved}
true

This completes the proof of the first postcondition conjunct:

[level′L ]CL = presentC [h]CH ∧ level′n+1 = x ⇒ wp(Compn, level′L = level′′L)

For the second part of the postcondition, we need:

[level′L ]CL = presentC [h]CH ∧ level′n+1 = x ⇒ wp(Compn, level′n+1 = x)

which holds, becauseCompn only does assignments on levels0 . . .n. Thus, bywp-AND,
we have:

[level′L ]CL = presentC [h]CH ∧ level′n+1 = x ⇒
wp(Compn, level′L = level′′L ∧ level′n+1 = x)

2

5.4.8 DOC-PRESERVEand INTENDED requirements

Similar to the single-layered editor,DOC-PRESERVEstates that interpretation extra state
is reused, whereasINTENDED has a double function. The requirement states both that
presentation extra state is reused, as well as that the final lower level resembles the updated
lower level.

Consider the interpretation extra state of the composition, which is represented by the
equivalence classes ofCH. Each of these classes consists of a number ofHH classes.
If we do not assumeABSORPTION , then closeness in a class ofCH is established in
two steps. The lower layer selects the closestHH class by.-CLOSE, after whichDOC-
PRESERVEof the higher layer selects the closest element from this class.

On the other hand, ifABSORPTIONholds, then eachCH class corresponds to exactly one
HH class, and closeness is guaranteed byDOC-PRESERVEon the higher layer.

The part ofINTENDED for reusing presentation extra state is guaranteed by the component
layers in a similar way as for interpretation extra state (without assumingABSORPTION).
The other part ofINTENDED must be guaranteed byinterpretL and interpretH, and thus
serves as the specification of these functions.
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5.4.9 Conclusions

A layered editor consisting of two component layers can be specified in the same manner
as a single-layered editor, but imposes additional requirements on the components. In or-
der to guarantee that the composition is valid, we need thepresent-MATCH andinterpret-
MATCH conditions on the components. Furthermore, forDOC-INERT andPRES-INERT

requirements, we need to assume the conditionsORTHOGONAL and the rather complex
ORTHOGONAL-R.

The stronger conditionABSORPTIONimplies all four additional conditions:

[m]LH = [m′]LH ⇒ [m]HL = [m′]HL ABSORPTION

For the top-most composition, we cannot assumeABSORPTIONbecause this would rule
out interpretation extra state altogether. However,present-Match, interpret-Match, OR-
THOGONAL trivially hold for the top-most composition, andPRES-INERT is proven with-
out assumingABSORPTIONfor the top-most composition.

Because an editor consisting ofn layers is specified by repeatedly splitting of layers from
underneath, we need to proveABSORPTIONfor each of then−1 composite layers, except
the top-most one.

ABSORPTIONis a rather strong condition. It only allows interpretation extra state at the
document level, since all other interpretation extra state is absorbed by presentation extra
state. Further research is necessary to determine whether this restriction disallows the
specification of useful editors, in which case a workable but less strict condition needs to
be established.

5.5 Duplicate presentations

The specification developed in the previous sections does not yet offer support for presen-
tations that duplicate information (see also Section 4.3). A simple example of a duplicate
presentation is the functionpresent x = (x, x). An intuitive way to handle edit operations
on duplicates is to use the duplicate that was edited for computing the document update.
This behavior, however, cannot be expressed by the specification from the previous sec-
tion, since the specification does not take the originallevelL into account.

Duplicates become particularly problematic in combination with extra state and multiple
layers, but although the edit behavior for duplicates is difficult to specify formally, the
implementation of this behavior is often rather clear. Hence, in this section, we only
sketch how the editor specification may be adapted to support the handling of duplicate
presentations.
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5.5.1 Dealing with duplicates

A precise definition of when a presentation contains duplicates is hard to give without
making additional assumptions on the presentation formalism and the level types. There-
fore, we adopt an informal notion of duplication, illustrated by a number of examples.

Besides the obviouspresent x = (x, x), we speak of duplication whenever a presentation
contains two or more values that depend on the same document value (e.g.present x =
(2x,−x)). This holds even if the computation for the derived value does not have an
inverse, as inpresent x = (x, x mod 256). Although the term may seem somewhat odd in
this case, we do refer to such presentations as duplicates. A related examplepresent x =
(x div 256, x mod 256) shows the subtlety of duplication, since in this case there is no
duplication of information, and both elements of the presentation tuple can be edited
without causing a conflict.

Further, besides depending on a single document value, a duplicate may also depend on
several values. Hence, an average value of a list of integers (when presented together
with the list) can be regarded as a duplication of the values in the list. Other examples of
duplication are derived type signatures for functions, or even the color of a keyword in a
syntax-coloring editor.

The easiest way to deal with duplicate information is to simply ignore all but one of the
duplicates on interpretation and thus making the ignored duplicates non-editable. This
is in fact the only way that is allowed by the specification of the previous sections. For
present x = (x, x), this leaves a choice of interpret functions: withinterpret (x, y) = x,
only the first value is editable, and withinterpret (x, y) = y only the second value.

In some cases non-editable duplicates are perfectly acceptable. In case of the list of
integers with its average, few people will expect to be able to edit the average value. Even
fewer people will expect to be able to edit colors in a syntax-coloring editor and thereby
modify the edited program source. In many cases, however, we do want to be able to edit
duplicate values.

We discuss how each of the requirements from the previous sections is affected by the
presence of duplicates.

5.5.2 Adapting the INTENDED requirement

When a duplicate value in a presentation is edited, the edited duplicate should determine
the document update. This is in line with the requirement that if an update not exact, the
editor will perform the operation that the user intended.

Edit operations on duplicates most probably result in an invalid presentation, unless a user
has managed to edit all occurrences of the duplicated element in a consistent way. Hence,
to a large extent, the result of an edit operation on a duplicate value is specified by the
INTENDED requirement:
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{true} Comp{level′L “close to” level′′L} INTENDED

However, in its current form,INTENDED cannot specify the desired behavior for edited
duplicates, since it relateslevel′′L to level′L without takinglevelL into account. An example
shows the problem that can occur.

Consider an editor withpresent x = (x, x). Because the edit operation(0,0) ; (1,0)
should result in presentation(1,1), we must have(1,0) “close to” (1,1). On the other
hand, the desired result of(1,1) ; (1,0) is (0,0), implying (1,0) “close to” (0,0).
Thus, based onlevel′L alone,INTENDED cannot specify the correct behavior for an edit
operation that updates the lower level to(1,0).

A second example shows the problem more precisely. Consider the functionpresent x =
(x, x, x). If a user edits the first element of the presentation ((0,0,0) ; (1,0,0)) the in-
tuitive result would be to change the document to1. However, since(1,0,0) is arguably
closer to(0,0,0) than(1,1,1), level′′H is specified to be0 instead of1. Therefore, an edi-
tor conforming to the specification does not allow any editing in the presentation, unless
two or more values are edited simultaneously and consistently.

The problem with theINTENDED requirement is that the duplicates of the edited part of
the presentation influence the final result of the edit operation. We tackle the problem by
introducing an operator∆ :: T→ T→ T?, to ignore duplicates of edited values.

The applicationlevel∆ level′ returns a value that is structurally the same aslevel′, but in
which for each edited value, all duplicates have been replaced by wildcards. (Note that
∆ thus depends on the presentation mapping.) For a presentation without duplicates, we
havelevel∆level′ = level′. If two duplicates are updated simultaneously, the result of∆ is
not defined.

Similar to Section 5.3, a wildcard stands for any value. A wildcard is ignored when
testing for equality, or evaluating closeness. Hence, both(1,1,1) and(1,3,5) are equally
(and maximally) close to(1, *Int, *Int). If we uselevel ∆ level′ instead oflevel′ in the
INTENDED requirement, the duplicates of the edited part of the presentation will have
been replaced by wildcards and thus no longer influence the final result.

We provide two examples to illustrate the behavior of∆. For the first example, con-
sider the presentation functionpresent (x, y) = (x, x, x, y, y). If a user updates the sec-
ond element of the presentation tuple (e.g.(1,1,1,5,5) ; (1,2,1,5,5)), we compute
(1,1,1,5,5) ∆ (1,2,1,5,5) = (*Int,2, *Int,5,5), which can be interpreted unambigu-
ously as(2,5) .

Another example ispresent (x, y) = (x, y, x+ y). For an update on the first element of the
tuple ((1,2,3) ; (10,2,3)), we get(1,2,3) ∆ (10,2,3) = (10,2, *Int), which is inter-
preted as the document(10,2). If the sum is edited, for example by(1,2,3) ; (1,2,13),
we get(1,2,3) ∆ (1,2,13) = (*Int, *Int,13). In this case, the specification leaves a choice
for the document value, since any value of the form(z,13− z) is a correct interpretation.
If we take into accountPRES-PRESERVE(or DOC-PRESERVE), the choices are reduced
to (11,2) and(1,12).
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It is difficult to give a formal specification of∆, because we do not have a formal definition
of the notion of duplicate information. Moreover, when a value influences the structure
of a presentation, rather than a specific value in the structure, this cannot be modeled
with wildcards. For these reasons, we keep the description of∆ informal, and leave the
behavior of the editor unspecified in conflict situations.

Using ∆, we define anINTENDED requirement that does not require closeness on dupli-
cates of the edited part of the presentation:

{true} Comp{levelL ∆ level′L “close to” level′′L} INTENDED

However, this requirement alone is not sufficient. Recall that the oldINTENDED also
served to preserve the presentation extra state. Because duplicates are ignored by the new
INTENDED, the requirement says nothing about their extra state. Therefore, we need to
add a weaker requirement for preserving extra state of the duplicates. The new require-
ment corresponds to the oldINTENDED requirement:

{true} Comp{level′L “close to” level′′L} PRES-PRESERVE

With the new requirements, the two examples at the start of this section are no longer
problematic. For thepresent x = (x, x) example, after(0,0) ; (1,0) the requirement
states(1, *Int) “close to” level′′L , with (1,1) as a solution, whereas for(1,1) ; (1,0) it
states(*Int,0), with (0,0), as a solution. For the triple presentation, the requirement after
updating the first element states(1, *Int, *Int) “close to” level′′L , which has(1,1,1) as a
solution.

5.5.3 Adapting the PRES-INERT requirement

Besides theINTENDED requirement, we also need to adapt thePRES-INERT requirement
to support duplicates. An example shows the problem that can occur with the oldPRES-
INERT requirement.

Consider an editor for a very simple functional language. The document is a list of decla-
rations, which is presented as a list of strings together with a message about type correct-
ness. Furthermore, the body of a function may be hidden (see Section 2.1.1), in which
case it is represented by the string"...".

A type-correct document[ f = a + 2,a = 1] can be presented while hiding the body of
f , yielding: "f = ...; a = 1; ok". The stringok signals that the program is type
correct.

If a user performs the updatea = 1 ; a = True, the most natural result would be an
updated document[ f = a + 2,a = True], with a presentation that shows the type error:
"f = ...; a = True; error". Of course, in a real-world editor we would like to
have a somewhat more informative error message, but this basic message is sufficient for
the example.
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The problem that occurs is that becauselevel′L ("f = ...; a = True; ok") is
a valid presentation (take the document[ f = 2,a = True]), PRES-INERT states that
level′L = level′′L . Therefore, according to the specification, the editor has to update the
document such that its presentation is"f = ...; a = True; ok". The only pos-
sible way to do this is by changing the hidden body off , which is clearly not the desired
behavior.

To preventPRES-INERT from suggesting updates on hidden parts of the document, we
adapt the requirement in a similar way asINTENDED; both the pre- and the postcondition
are changed to ignore duplicates of the updated parts of the lower level. We use=? to
denote equality on values that may contain wildcards.

{[levelL ∆ level′L ]L =? present [h]H} Comp{levelL ∆ level′L =? level′′L}
PRES-INERT

The precondition has been weakened because otherwise the presence of duplicates in
the presentation may disable the requirement. The postcondition, on the other hand, is
weakened because we only require the updated parts to stay the same. Duplicates of the
updated part, such as the type error in the example above, may change.

Because the precondition ofPRES-INERT has been weakened, it is satisfied by the two
examplespresent x = (x, x) andpresent x = (x, x, x). Hence, the editing behavior for
these examples is no longer specified by theINTENDED requirement. TheINTENDED

requirement now, more appropriately, only applies to presentation updates that are not
valid even when duplicates are ignored. An example of such an update occurs in an
expression editor with syntax coloring and two views. If an expression is entered in one
of the views, it is not a valid presentation even if the second view is ignored, because
the new expression does not have the correct syntax coloring. Hence, theINTENDED

requirement applies.

5.5.4 The remaining requirements

The precondition ofDOC-INERT could be changed in a similar way as the precondition of
PRES-INERT, but this is not necessary. Because the precondition of the edit step ensures
that the unchanged parts of the presentation are valid with respect tolevelH, only the
changed parts may break the precondition. Hence, it makes no difference to also include
the unchanged parts in the precondition ofDOC-INERT, as the changed parts determine
whether the requirement applies or not.

Further,POSTCONDITION should still hold between the entire higher and lower level,
andDOC-PRESERVEonly refers to higher-level values and is therefore not affected by
duplicates in the presentation.

Finally, we haveINTERPRESENT: [l]L = present [h]H ⇒ [h]H = interpret [l]L , which is
still a valid requirement in the presence of duplicates. However, the requirement does
not say anything about presentations in which only one duplicate is edited, because in
that case the presentation is invalid. Hence,INTERPRESENT is no longer sufficient to
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provePRES-INERT (although it probably still impliesDOC-INERT). Moreover, because
it does not refer to the data levels andComp, INTERPRESENT cannot be modified in a
straightforward way, similar toDOC-INERT andINTENDED.

5.5.5 Conclusions

Summarizing, we have the following set of requirements:

[l]L = present [h]H ⇒ [h]H = interpret [l]L INTERPRESENT

{true} Comp{[level′′L ]L = present [level′′H]H} POSTCONDITION

{[level′L ]L = present [levelH]H} Comp{levelH = level′′H} DOC-INERT

{[levelL ∆ level′L ]L =? present [h]H} Comp{levelL ∆ level′L = level′′L}

PRES-INERT

{true} Comp{levelL ∆ level′L “close to” level′′L} INTENDED

{true} Comp{level′L “close to” level′′L} PRES-PRESERVE

{true} Comp{levelH “close to” level′′H} DOC-PRESERVE

If the presentation does not contain duplicates, then the requirements correspond exactly
to the requirements of the previous section.

Further research is needed to establish a formal notion of duplicates in the presentation,
as well as a specification of the∆ operator. Furthermore, it would be desirable to have
a form of INTERPRESENT that impliesPRES-INERT even in the presence of duplicates.
Using these concepts, we could provide a verification thatCompmeets the requirements,
similar to the verification in Section 5.4.

With duplicates it is easy to specify presentation mappings for which it is difficult, if not
impossible, to specify an interpretation mapping. However, it must be noted that it is
not the aim of the specification to be able to handle every possible presentation mapping.
Rather, we wish to be able to specify editors for the common cases of duplication, which
we know how to handle.
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5.6 Conclusions and related work

In this chapter, we have provided a specification of theinterpret mapping, given a presen-
tation mappingpresent. Together with the provided computationCompthis constitutes a
specification of a presentation-oriented editor. The specification is layered and supports
extra state in both presentation and interpretation direction.

The combination of extra state and duplication makes it easy to construct a presentation
mapping for which we cannot specify aninterpret function. However, the aim of the
specification is not to specify an editor for every imaginable presentation mapping, but
rather to be able to formally specify the editors for real-world examples in which basic
cases of duplication and extra state occur.

The specification establishes requirements on the pair ofpresent and interpret functions
that constitute an editor, and helps to clarify the notion of a layered presentation-oriented
editor. Furthermore, the specification gives a more precise definition of the concept of
extra state, and what it entails to reuse extra state.

Related to the specification in this chapter is the work by Meertens [57] on maintainers
for constraints between a document and its presentation. Given a constraint between
two values, Meertens formulates a number of requirements for a pair of functions to be
a maintainer for that constraint. In our case, the constraint would be the presentation
relation. Meertens also provides a more formal approach to the concept of closeness and
gives a number of maintainers for specific constraints.

Rather than specifying requirements for an editor, Greenwald, et al. [32], and Mu, Hu,
and Takeichi [60], describe injective languages that allow the computation of a document
from its (possibly edited) presentation. The language by Mu, Hu, and Takeichi also takes
into account duplication of information.

The three formalisms have in common that their focus is not immediately on real-world
presentation functions. In their current state they only handle rather basic presentations.
It is not yet clear whether these basic presentations are scalable to the presentations of
the use cases from Chapter 2. Furthermore, all of the formalisms only take into account
interpretation extra state, while disregarding presentation extra state. Finally, only [57]
deals explicitly with a layered presentation relation.

An important area of future research lies in the development of a presentation language
that is powerful enough to specify all use cases, and which automatically constructs
interpret. Because an efficient inverse cannot always be computed automatically, complex
parts of the presentation can be annotated, whereas for simpler presentationsinterpret is
constructed automatically. Until such a language has been developed, it is up to the im-
plementor to guarantee correctness of the editor.





Chapter 6

Presenting structured
documents with XPREZ

In this section, we introduce the presentation language of Proxima:XPREZ. The lan-
guage is an extended version of the presentation level that was discussed in Section 3.1.3.
XPREZ has been implemented in Haskell. Although the language is not yet fully de-
veloped, it is already powerful enough to cover much of the TEX math typesetting as
described in [33].

Although there are many presentation languages for structured documents (e.g. [1, 3, 11,
56, 71]), not a single one seems to have sufficient expressiveness and abstraction mech-
anisms to specify the presentations of the use cases from Chapter 2. Pretty-printing li-
braries (e.g. [14, 36, 41, 69, 84]) do offer expressiveness, abstraction mechanisms, but
these libraries are mainly text-oriented.

Below are two screenshots of exampleXPREZpresentations containing ligatures (e.g. the
“fi” in “Scientific”) and several mathematical constructs. An editor for these presentations
can already be instantiated with the Proxima prototype, but in order to support pleasant
editing, the prototype requires a few more extensions.

137
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TheXPREZ language consists of a set of Haskell combinators that can be used to define
a presentation. A presentation is tree-structured and represents an attribute-grammar tree.
The attributes are presentation attributes such as font size and color. A special combinator
can be used for modifying presentation attributes.

Section 6.1 discusses several existing presentation languages and states a number of re-
quirements for a presentation language. This is followed by an informal description of
theXPREZpresentation language in Section 6.2. Section 6.3 concludes with an overview
of future research.

6.1 Presentation languages

In this section, we discuss five presentation languages for structured documents. XSL [1]
is a presentation language for XML documents, whereas CCSS [3] and PSL [56] are
presentation languages for HTML. CSS 2.0 [11] can be used to present both XML and
HTML documents. Finally, the language P [71] is the presentation language of the Thot
editor toolkit (see Section 2.3.3).

In Section 2.2.3, we mentioned that a presentation language consists of two parts. One
part is thepresentation target language, which describes the components (strings, boxes,
rows, etc.) of a presentation. The other part is thepresentation specification language, in
which we specify how a document is mapped onto an element of the target language. Not
every presentation language explicitly identifies its presentation target language. More-
over, if the target language supports abstraction, a presentation may contain functions,
which makes it difficult to clearly separate the two languages.

In the remainder of this chapter, we focus on presentation target languages, because
XPREZ is the presentation target language of Proxima. The presentation specification
language of Proxima is an attribute-grammar formalism, but the details of using this for-
malism in Proxima still require further research. Section 7.2 provides more information
on the presentation attribute grammar, as well as a few example presentation specifica-
tions.

In most presentation languages, a presentation is a tree structure, in which the leaves are
atomic presentations and the nodes are composite presentations. An atomic presentation
is a string or a simple graphical objects such as a line, a box, or an image. On the other
hand, a composite presentation specifies for a number of child presentations how these are
put together. We distinguish three different layout models for composite presentations: a
box, a matrix, and a flow layout.

Box layout. In a box layout, child presentations are positioned relative to each other, for
example horizontally in a row, or vertically in a column. The exact positioning may
be specified for the entire list of children (e.g. by using a row or column combi-
nator), or for each child itself, by specifying how it should be positioned relative
to its sibling. A box model may provide facilities for aligning and stretching child
presentations.
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Matrix layout. A matrix model is similar to a box model, but aligns its children both
horizontally and vertically. Because it is more general than a row or a column, a
matrix may be used to create a box layout.

Flow layout. A flow layout is used for line- and page-breaking. Child presentations are
placed next to or below each other, until the remaining space is too small to fit the
next presentation, in which case a new line or page is started. Thus, unlike in a box
or matrix layout, the structure of the presentation as it is finally rendered is only
partially determined by the structure of the presentation definition.

Besides constructs for specifying the structure of the presentation, presentation languages
also have a notion of presentation attributes (sometimes called properties). A presentation
attribute affects the style, size, or position of a presentation, but not its structure. Examples
of presentation attributes are font size, background color, alignment information, etc.

6.1.1 Existing presentation languages

Of the five presentation languages we examined, only XSL regards its target language as
a language in its own right, with a separate syntax. The other languages only describe
how presentation attributes of the elements of the target presentation tree can be set, but
do not treat a presentation as an actual value in the language.

CSS 2.0.Cascading Style Sheets, level 2 [11] is an example of a simple presentation
language. Its target language is almost invisible to the style sheet designer. A presentation
is a tree structure, in which the nodes specify presentation attributes such as font size or
color, and the leaves are document content. A presentation attribute may be specified
either absolutely or as a percentage. The meaning of a percentage depends on the attribute.
For instance, a percentage value for thefont-sizeattribute refers to the font size of the
parent element, but a percentage for theline-heightattribute refers to the font size of the
element itself. It is not possible to let the value of a presentation attribute depend on
arbitrary presentation attributes of the parent or siblings in the presentation tree.

CSS 2.0 supports a flow layout and a table format for a matrix layout. However, the
control over alignment in the matrix model is rather weak.

CCSS.Constraint Cascading Style Sheets [3] is an extension of the CSS 2.0 standard that
is based on constraints. The target language of CCSS closely resembles the CSS 2.0 target
language, but presentation attributes for a child are specified using constraints instead of
percentages of the parent’s attribute values. Another difference is that the constraints may
refer to global constraint variables and to left-siblings in the presentation tree as well as
to the parent node. Similar to CSS 2.0, CCSS supports a flow and matrix layout, but no
box layout.

XSL FO. On the other side of the spectrum is the XSL stylesheet language for XML. The
design of the target language, XSL Formatting Objects, was based on the flow objects of
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the DSSSL [39] presentation language for SGML. The formatting objects standard con-
sists of a large collection of elements that can be used to specify page models, presentation
attributes, and more complicated presentation aspects, such as hyphenation and counters.
A presentation is a tree that consists of these formatting objects.

XSL FO offers strong control over the flow model, but a box model is not supported.
The matrix (table) model for XSL FO has more control over alignment than CSS 2.0, but
horizontal alignment is still poorly supported. Hence, a mathematical formula cannot be
displayed elegantly in XSL FO.

PSL. The Proteus Stylesheet Language [56] is an attempt to combine the simplicity of
CSS 2.0 with the power of XSL. PSL extends the CSS target language with a box model
and graphical symbols. The value of a presentation attribute (which is called a property in
PSL) can be expressed as a mathematical expression that refers to presentation attributes
of nodes in the presentation tree. This mechanism is calledproperty propagation.

PSL supports a flow model and a constraint-based box model, but lacks a matrix model.
A presentation can specify its attributes for position and size relative to position and size
attributes of other presentations in the tree. These other presentations can be addressed us-
ing a number of primitive functions for accessing siblings, parents, ancestors of a specific
type, etc.

P. The language P is the presentation language of the Thot editor toolkit [71]. It has
a target language that consists entirely of boxes, which may be composed according to
a box, a flow, or a matrix model. P supports horizontal and vertical-reference lines for
automatic alignment of boxes. Instead of having a large number of different presentation
boxes, similar to XSL Formatting Objects, P has only three kinds of boxes with a large
number of presentation attributes. In contrast to PSL, the box layout in P is not constraint-
based.

Discussion

The languages discussed above are all declarative and domain-specific languages that vary
in expressive power. The languages CSS 2.0, CCSS, and PSL allow simple presentations
to be specified in a simple way, but cannot be used to specify more complex presentations,
such as mathematical formulas. In contrast, XSL and P allow complex presentations to be
specified, but due to the lack of abstraction, simple presentations also have rather elaborate
specifications, especially in P.

Only P and PSL support a box model, but both models are of a rather object-oriented and
imperative nature. Moreover, presentations are not first-class values. A box can specify
its own position attributes relative to its parent or siblings, but it is not possible to state at
parent-level that two child presentations should have their top and bottom aligned, or that
two presentations should have the same widths.

Letting a child presentation specify its own layout makes it more difficult to understand
a presentation. For example, to reverse the presentation of a horizontal list of children,
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each child must specify that its right side must be aligned with the preceding child’s left
side. Moreover, if the order of the children depends on an attribute of the parent, then the
presentation definition of each child needs to access this parent attribute and use its value
to determine the alignment of the child.

If, on the other hand, child presentations are first-class, and abstraction mechanisms can
be used to define combinators on them, a list of children may be reversed with a reverse
function in the presentation definition of the parent. Another advantage of this approach
is that the concepts of layout direction (horizontal or vertical) and order of the children
are orthogonal now. The layout direction is determined by which combinator is applied to
the list of children, whereas the order is determined by whether or not a reverse function
is applied to the list. In the model of P and PSL, these concepts are intertwined, and
reversing a horizontal list is conceptually different from reversing a vertical list.

Requirements

Based on the requirements from Chapter 2 and the previous discussion, we conclude that
the presentation target language for Proxima, should meet the following requirements:

Proportional effort. It must be possible to specify complex presentations, but the speci-
fication of simple presentations should still be esy.

Declarative. In a declarative language, understanding a composite presentation is easier,
because the computation of a presentation does not generate side effects. Another
advantage is that the designer need not worry about the order of computation of
presentations and attributes.

First-class presentations.A first-class presentation can be named and manipulated at
the level of its parent, which in many cases is the natural place for such manipula-
tions. At the same time, it is also possible to specify aspects of the presentation at
the level of the child when this is more appropriate.

Box, matrix, and flow layout. All four layout models mentioned at the start of this sec-
tion should be supported. The alignment of the box and matrix models must be
powerful enough to specify complex presentations such as mathematical formulas.

Text, graphical, and widgets. It must be possible to specify text and graphical elements
such as lines, boxes, and images. Moreover, the language must support user-
interface widgets, such as buttons, selection lists, and menus.

Powerful abstraction mechanism.User-defined functions and variables help to reduce
code duplication, facilitate code reuse, and increase transparency, because complex
pieces of code may be replaced by functions with well-chosen names.

Domain-specific. The language should have syntax for presentation-specific constructs
such as anex (the height of the letter ‘x’ in the current font and size) and different
measuring units such as pixels and inches.
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data Inh = Inh { fontFamily :: String, fontSize :: Int,

textColor, lineColor, fillColor, bgColor :: Color }

data Syn = Syn { hRef, vRef, minWidth, minHeight :: Int,

hStretch, vStretch :: Bool}

Figure 6.1: The XPREZpresentation attributes

6.2 The XPREZ target language

With the requirements from the previous subsection in mind, we have developed the
declarative presentation languageXPREZ.

6.2.1 XPREZpresentation model

Similar to P and the document formatting languages TEX and Lout [45],XPREZ is a box
language with support for flow layout. A presentation is a value of the abstract type
Xprez, and is either an atomic box containing a text or a graphical object, or a composite
box that contains a list of child presentation boxes. We constructXprez values in the
functional language Haskell, using a number of primitive functions that are described in
Section 6.2.2.

A presentation box (from now on called presentation) has a number of attributes that
describe its size and its appearance:

A presentation tree in Xprez represents an attribute grammar with inherited and synthe-
sized attributes. Presentation attributes that are typically specified for an entire subpresen-
tation, such as color and font size, are inherited attributes. On the other hand, presentation
attributes that are set by a child and used by its parent, such as reference lines and size
information, are synthesized attributes. Figure 6.1 shows the two Haskell recordsInh
andSyn that are used to model the inherited and synthesized presentation attributes. The
figure also shows the type of each attribute.

ThehRef andvRef attributes specify the reference lines that are used for aligning boxes
horizontally and vertically when combined in composite presentations. Note that the
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empty :: Xprez

text :: String -> Xprez

rect :: Xprez

img :: String -> Xprez

poly :: [ (Float, Float) ] -> Xprez

row, col, overlay :: [ Xprez ] -> Xprez

rowR, colR :: Int -> [ Xprez ] -> Xprez

matrix :: [[ Xprez ]] -> Xprez

format :: [ Xprez ] -> Xprez

Figure 6.2: The XPREZprimitives

vertical-reference line is in fact a horizontal line and vice versa. The term vertical-
reference line stems from the fact that it is used for vertical alignment; modifying the
vertical-reference line affects the vertical position of the presentation.

The boolean attributeshStretch andvStretch specify whether or not the presenta-
tion is allowed to stretch in horizontal or vertical direction. The remaining attributes are
self-explanatory:fontFamily, fontSize, textColor, lineColor, fillColor, and
bgColor. In the future, this set will be extended with other attributes such as line and font
style, and attributes for modeling edit behavior (e.g.onMouseClick :: EditCommand).

6.2.2 XPREZprimitives

The first five combinators in Figure 6.2 specify atomic presentations. Theempty combi-
nator has a presentation that is invisible and takes up no space; it is the neutral element
for various presentation compositions. A string is presented with combinatortext, and a
rectangle with combinatorrect. Thepoly combinator takes a list of relative coordinates
between (0.0, 0.0) and (1.0, 1.0) and produces a line figure that connects these points. The
coordinates are relative because the final coordinates depend on the size of thepoly pre-
sentation. Finally,img can be used to display external images. The argument is a string
that contains the path to the image file. In a future version, animg term may also contain
a reference to an image that is encoded as part of the document.

Except fortext, the reference lines of an atomic presentation both have coordinate 0 (i.e.
the north-west corner). Fortext, the vertical-reference line is the baseline of the text and
the horizontal-reference line is at 0. By default, a simple presentation does not stretch.

The remaining primitives in Figure 6.2 specify composite presentations. The behavior of
columns (col) is equal to that of rows (row) with the horizontal and vertical directions
swapped. Hence, we only discuss therow primitive. In a row, each child presentation
is placed immediately to the right of its predecessor, with their vertical-reference lines
aligned. Horizontal-reference lines have no effect on the positioning in a row.
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The bounding box of a row is the smallest rectangle that encloses all elements of the row.
The vertical-reference line of the row is equal to the aligned reference lines of the children,
whereas the horizontal-reference line is taken from the first child. In order to use the
horizontal-reference line from one of the other children, we can use therowR combinator.
The integer argument ofrowR specifies which child determines the horizontal-reference
line for the row, with 0 denoting the first child.

By default, a row stretches in horizontal direction if one of its children does, and it
stretches in vertical direction if all children stretch vertically. The defaults may be over-
ridden by setting the stretch attributes with the method that is shown in the next section.

The matrix combinator can be used to describe a table layout, in which elements are
aligned with elements to their left and right as well as with elements above and below
them.

Becauserow, column and matrix do not allow their children to overlap, we need a
special combinator for overlapping presentations. Theoverlay combinator places its
children in front of each other, while aligning both the horizontal and vertical-reference
lines. It can be used to create underlined text, for example. Because alignment takes place
on both reference lines and hence all child reference lines overlap, no specialoverlayR
combinator is needed.

A flow layout can be achieved with theformat combinator for paragraph formatting. The
combinator takes a list of presentations as argument and splits this list into rows based on
the available horizontal space. The resulting rows are placed in a column. BecauseXprez
does not yet have a page model, only horizontal formatting is supported.

Here is an exampleXPREZpresentation that illustrates alignment and stretching in a row:

let cross = poly [(0,0),(1,0),(1,1),(0,1),(0,0),(1,1),(0,1),(1,0)]

greycross = cross ‘withStretch‘ True ‘withbgColor‘ grey

in row [ text "Big" ‘withFontSize‘ 200

, colR 2 [ cross, cross, text "small", greycross, greycross ] ]

The code produces the following image (the dashed line has been added to show vertical-
reference line of the presentation):

The second element in the row is a column that takes the vertical-reference line from its
third child. Therefore, the word “Big” is aligned with the word “small”. Thecross object
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Figure 6.3: Data flow for with_.

is a line figure in the form of a rectangle with a cross. Thegreycross is across, which is
made stretchable in both directions bywithStretch, and which has a grey background.

Because the column contains presentations that stretch vertically, the column itself also
stretches vertically. The column is created with acolR combinator with argument2,
which causes the third child (text "small") to be the object from which the reference
lines of the column are taken. The two stretching objects above the reference object
are each assigned equal amounts of the remaining space above the vertical-reference line,
and likewise, the objects underneath the reference object are assigned the remaining space
below the reference line. If, on the other hand, the reference object itself is allowed to
stretch, then the total amount of available space is distributed equally over all stretching
objects. In this case, the reference object is not aligned.

6.2.3 Modifying presentation attributes

The presentation attributes of a presentation can be modified using thewith_ combinator.
(The name has an underscore because “with” is a reserved word in Haskell.)

with_ :: Xprez -> ((Inh, Syn) -> (Inh, Syn)) -> Xprez

The combinator takes a single child presentation as argument, together with a function
from attributes to attributes. The function is applied to the inherited attributes coming
from the parent, and the synthesized attributes coming from the child. From the result of
this application, the inherited attributes are passed to the child, whereas the synthesized
attributes are passed to the parent. Thus, thewith_ combinator can be used to modify the
inherited and synthesized attributes of a presentation.

Figure 6.3 shows the data flow for the attributes ofpres andpres ‘with_‘ f. Because
f may be an arbitrary function, the combinator may introduce cycles in the attribution. It
is up to the designer of the presentation to ensure safety.

Because the inherited and synthesized attributes are modeled as Haskell records, we use
the Haskell record syntax for accessing and updating presentation attribute values. Hence,
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for a record of inherited attributesinh :: Inh, the expressionfontSize inh denotes
the value of thefontSize attribute ininh. Furthermore,inh { fontSize = 10 }
denotes a copy ofinh in which thefontSize field is updated to 10. Thus, we can define
awithFontSize combinator:

withFontSize :: Xprez -> Int -> Xprez

withFontSize xp fs = xp ‘with_‘ \(inh, syn) -> (inh {fontSize = fs}, syn)

The function argument towith_ introduces a considerable syntactic overhead to the pre-
sentation code. To reduce this overhead, we can define a library of combinators, such as
withFontSize, for frequent applications ofwith_. Thus, most of the explicit applica-
tions ofwith_ may be avoided.

Besides combinators that set an attribute value absolutely, we can also define combinators
that take into account the original value of an attribute when setting its value. Consider
the combinatorwithFontSize_ defined below. Instead of an integer, it takes a func-
tion (ffs :: Int -> Int) as argument. Given the inherited font size, the functionffs
specifies its new value.

withFontSize_ :: Xprez -> (Int -> Int) -> Xprez

withFontSize_ xp ffs =

xp ‘with_‘ \(inh, syn) -> (inh { fontSize = ffs (fontSize inh) }, syn)

With pres ‘withFontSize_‘ (\fs -> 2*fs) we specify thatpres gets a doubled
font size. An application ofwithFontSize_ has a function argument, but the function is
considerably simpler than the function argument ofwith_.

The font-size combinators show how abstraction is used to meet theproportional effort
requirement. For simple changes of the font size, the simplewithFontSize combinator
can be used, and only if more control is desired, it is necessary to use the more compli-
catedwithFontSize_ or with_ combinators.

A future version ofXPREZwill support a domain-specific special syntax forwith_. Thus,
in order to specify that a presentationpres gets twice the font size of its parent, a red
background color, and a height that is twice the height of the letter ‘x’ in the current font,
we will be able to write something in the line of:

pres{ child.fontSize = 2*parent.fontSize, child.color = red, height = 1ex }

6.2.4 Advanced examples

Because a presentation inXPREZ is a first-class value, it is possible to manipulate a child
presentation (e.g. change its position or modify the font size) at the level of its parent.
This is illustrated in the presentation for a mathematical fraction:



6.2 The XPREZ target language 147

frac e1 e2 = let numerator = hAlignCenter (pad (shrink e1) )

bar = hLine

denominator = hAlignCenter (pad (shrink e2) )

in colR 2 [ numerator, vSpace 2, bar

, vSpace 2, denominator ] ‘withHStretch‘ False

pad xp = row [ hSpace 2, xp, hSpace 2 ]

shrink e = e ‘withFontSize_‘ (\fs -> (70 ‘percent‘ fs) ‘max‘ 10)

The non-primitive library functionhAlignCenter centers its argument horizontally, and
theshrink function reduces the font size to 70%, with a minimum of 10. The result of
(text "x" ‘frac‘ text "2") ‘frac‘ text "1 + y" is:

Thepad andshrink functions illustrate thefirst-classandabstractionrequirements. Be-
cause a presentation is a first-class value, the presentations of the numerator and the de-
nominator can be resized and positioned in the presentation of the fraction itself. Fur-
thermore, we can abstract over positioning and resizing by using the functionspad and
shrink.

In contrast, child presentations in both P or PSL cannot be addressed at parent level.
Hence, the numerator, the denominator, and even the fraction bar, each have to specify
their own size and relative position. As a result, it is difficult to reuse parts of a pre-
sentation in another presentation, since all parts refer to each other. Furthermore, the
manipulations on the appearance are harder to read, because no abstraction can be used.

The second example is a pair of combinators that can be used to create tree-browser
presentations:

The image has been created with themkTreeLeaf andmkTreeNode combinators, shown
in Figure 6.4. Both combinators take anXprez argument that is the presentation of the
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mkTreeLeaf :: Bool -> Xprez -> Xprez

mkTreeLeaf isLast label =

row [ leafHandle isLast, hLine ‘withWidth‘ 5, leafImg

, hLine ‘withWidth‘ 5, refHalf label ]

mkTreeNode :: Bool -> Bool -> Xprez -> [Xprez] -> Xprez

mkTreeNode isExp isLast label children =

rowR 1 [ hSpace 4, nodeHandle isExp isLast, hLine ‘withWidth‘ 5

, col $ [ row [ col [nodeImg , if isExp then vLine else empty]

, hLine ‘withWidth‘ 5, refHalf label ] ]

++ (if isExp then children else [] ) ]

nodeHandle isExp isLast

= colR 1 ([ vLine, handleImg isExp]++ if isLast then [] else [vLine])

leafHandle isLast = colR 1 ([vLine, empty]++ if isLast then [] else [vLine])

handleImg isExp = if isExp then minusImg else plusImg

nodeImg = img "folder.bmp" ‘withRef‘ (7,7)

leafImg = img "help.bmp" ‘withRef‘ (7,6)

plusImg = img "plus.bmp" ‘withRef‘ (4,4)

minusImg = img "minus.bmp" ‘withRef‘ (4,4)

Figure 6.4: XPREZ tree-browser combinators

label, and the tree node also takes a list of child presentations (which should be either
nodes or leaves for a correct tree). A label is not restricted to text, but can be an arbitrary
XPREZ presentation, as shown by the case statement at the bottom of the tree. The tree
example shows that a complex and graphical presentation can be specified with relatively
little effort.

6.3 Conclusions and further research

Current style sheet languages lack either the expressiveness or the abstraction mecha-
nisms to specify complex presentations in a readable way. The declarative presentation
languageXPREZ, introduced in this chapter, combines a flow and box model with a pow-
erful abstraction mechanism and first-class presentations. The language is well-suited for
specifying a wide range of presentations, from tree browsers to WYSIWYG presentations
of mathematical formulas, using concise and readable presentation code. An implemen-
tation ofXPREZ is part of the Proxima prototype.

XPREZ can already describe a large variety of presentations, but the language does not
yet meet all the requirements of Section 6.1.1. The language still needs a page model (re-
quired for vertical flow layout), support for user-interface widgets, and a domain-specific
syntax.
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OnceXPREZ has a page model and vertical flow layout, it will be possible to support
page-related concepts such as footnotes and page references. In order to support such
presentations, an abstraction similar to thegalleyof Lout [45] may be added toXPREZ.

In a flow layout, spacing between two presentations should be visible when they end up
on the same line or page, but not when there is a line or page break between them. Hence,
XPREZneeds a primitive notion of padding and margins for a presentation, which can be
left out when appropriate. Moreover, the horizontal and vertical formatting algorithms
need support for optimal line- and page-breaking [48]. To support formatting during edit-
ing, we could use either a linear algorithm (e.g. [59]), or even an incremental algorithm
(e.g. [40]).

Although support for primitive user-interface widgets toXPREZ will not have a large
impact on the language, it is closely linked to the Proxima edit model. Hence, more
experience with building editors in Proxima is needed in order to establish the right model.

Finally, a domain-specific syntax may be supported using syntax macros [50], for which a
Haskell implementation has been developed. Until a domain-specific syntax is available,
the syntax required for attribute modification may be reduced by using techniques similar
to the property specification method of wxHaskell [51].

In XPREZ expressiveness and efficient evaluation are considered to be more important
than safety. AnXPREZ value is translated to an attribute grammar, in which the attribu-
tion may be influenced directly using thewith_ combinator. This results in an expressive
presentation language that can be efficiently evaluated, but also makes it possible to define
presentations that crash, or to create cycles in the attribution. A more restricted presenta-
tion language may guarantee safety, but will most likely not be able to specify the complex
presentations from Chapter 2. Hence, such editors need to be built by hand, which makes
it considerably harder to achieve safety.

It will be interesting to see whetherXPREZ can be integrated with a constraint solver.
Constraints provide an elegant way to specify presentations, and also offer more safety.
An entirely constraint-based version ofXPREZ, which made use of the Cassowary linear
constraint solving algorithm [4], turned out to be too slow to be suitable for editing. How-
ever, it may be an option to use a combination of the two formalisms (AG and constraints)
in which constraints are used only for certain subpresentations, while attribute grammars
are used for the remaining layout.

Besides extensions to theXPREZ formalism, an extensive library of well-chosen combi-
nators must be established to facilitate the specification of complex presentations. And
finally, it is desirable to have an algebraic model forXPREZ presentations. With such
a model, we can describe the exact behavior of the combinators with laws, rather than
textual descriptions.





Chapter 7

The Proxima prototype

A prototype of the Proxima editor has been implemented in the functional language
Haskell. Proxima is an editor generator, which means that given a document type def-
inition and number of sheets, the system generates (orinstantiates) an editor application.
The sheets that need to be specified for the prototype are a presentation sheet and a parsing
sheet, which are discussed in more detail in Section 7.2.

The architecture of the prototype corresponds to the architecture described in Chapter 3.
The presentation target language is theXPREZ language from Chapter 6. The implemen-
tation is platform-independent and has been successfully tested on Windows, Linux, and
MacOS X platforms.

The prototype is implemented entirely in Haskell and uses the wxHaskell [51] library
for the implementation of the user interface. The presentation sheet is compiled by an
attribute-grammar system [85], which is also used for the implementation of the arrange-
ment layer. The parsing sheet is specified using a parser-combinator library [83].

In the near future, Proxima will support dynamic updates to the sheets, and hence make
it possible to change the presentation of the document during editing. In theory, it is also
possible to support dynamic updates to the document type, and thus eliminate the need
for a generation step altogether. However, it is not clear yet whether the advantages of a
dynamic document type justify the implementation effort and the efficiency penalty.

The prototype does not yet support incrementality. However, because about 90% of the
execution time is taken up by the arrangement and rendering layers, and because editing is
typically a local process, simple modifications to these two layers already yield substantial
improvements. Experiments with such simple modifications have yielded an increase in
execution speed of about 900%, which leads to an acceptable response time for documents
of a few pages. For larger documents we need the underlying attribute-grammar compiler
to support incremental evaluation.
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Figure 7.1: An editor for Helium.

In Section 7.1, we show several example editors that have been instantiated with Proxima.
Section 7.2 discusses the components that are required for instantiating an editor. In
Section 7.3, we discuss the implementation aspects for each of the layers. Section 7.4
presents an overview of future work and concludes.

7.1 Instantiated editors

Three editors have been implemented with Proxima: a source editor for the functional lan-
guage Helium [34]; an editor for presentation slides in the style of Microsoft PowerPoint;
and a chess-board editor. Because the editors were implemented mainly for demonstration
purposes, all three editors are integrated in a single editor instantiation.

7.1.1 A Helium source editor

A source editor has been implemented for a subset of the functional language Helium [34],
which is a Haskell dialect designed for education. The editor provides most of the func-
tionality described in the source-editor use case (see Section 2.1.1). In order to provide
type information during editing, the editor is integrated with the Helium type checker.
Figure 7.1 contains a screenshot of the Helium editor in action.

In the figure, we see an editable view of a program source, with the focus on functiong in
the definition ofs. The right-hand side oflarge has been hidden and may be expanded
by clicking on the dots. The definition off shows that program constructs may have a
graphical presentation.
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The type signatures for the top-level declarations have been automatically derived, and
furthermore, the editor provides type information for local expressions as well. At the
top of the window we see the type for the expression focused on (if it has a type). At the
bottom, the variables that are in scope at the focus are listed together with their types.

To the right of each type signature is a comment that shows the value of the declared
identifier. The value changes dynamically when the source is being edited. Although not
very useful in a source editor, since most declarations are functions, these computations
provide an example of spreadsheet-like behavior; parts of the document that represent
computations are interpreted dynamically, and the results are displayed in the presenta-
tion.

Mixed document- and presentation-oriented editing

Expressions can be edited structurally (or document-oriented) based on the Helium ab-
stract syntax. Below is an example that shows how structure editing facilitates editing a
list. When the3*5 element is cut, the comma to the right of it automatically disappears.
When the element is pasted at the end, a comma appears at the left.

⇒ ⇒
cut3*5 paste3*5

The editor also supports structure building with placeholders. By selecting constructs
from a menu, an expression may be constructed:

⇒ ⇒
insertFracExp insertPowerExp

Similar structure editing is supported by conventional syntax-directed editors, but Prox-
ima has the advantage that the presentation can still be edited textually as well. Program
fragments can be entered or modified textually without having to switch to a different
view or mode. Below is a screenshot that shows a presentation-oriented cut operation.
Although the selection that is cut does not make sense at document level, the cut is a valid
edit operation at the presentation level.

⇒
cut “+2, 27, 3*”

Type errors

The editor shows type errors by displaying an error message at the bottom and marking the
location with a squiggly line in the source. This mechanism also works in the graphically
presented parts of the program, as is shown by the screenshot fragment below.
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A type error: 3+True.

The Helium type compiler is an interesting candidate for integration with Proxima be-
cause it has a sophisticated type checker. Besides the location of the error, the type checker
can provide additional information about the other parts of the program that contribute to
the error. Such information would be hard to show on a command-line, but can be dis-
played in a clear way by highlighting the relevant parts of the source code. Furthermore,
for common errors, the Helium type checker is able to provide hints on how to repair
them. A hint can be presented along with a button that performs the suggested reparation
when clicked.

Beta reduction

A simple reduction engine can be applied to a term in the source. The screen-shots below
show two steps in the reduction of the applicationf 3. First, the functionf is replaced by
its definition (see Figure 7.1). Then, a beta-reduction step is performed, and the argument
3 is substituted for all (free) occurrences ofx in the fraction. The process can be continued
by reducing the mathematical operators until we get the final value16.

⇒ ⇒

“replacef by definition” “reduce lambda”

The reduction engine is implemented by an attribute grammar of about 150 lines, which
can be reduced further to about 100 lines once the underlying attribute-grammar system
supports default attribute declarations.

Similar to beta-reduction, we could implement other source-to-source transformation,
such as refactoring operations [52]. Furthermore, by inserting the transformed term below
the original, instead of replacing it, the editor can be used to semi-automatically create
derivations, as in a proof editor (e.g. MathSpad [89]).

Editable list of top-level identifiers

The evaluation layer has not been completely implemented yet, but nevertheless a few
experimental evaluation-layer features have been implemented. The list of top-level iden-
tifiers at the top of Figure 7.1 is similar to an editable table of contents. Editing a name
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Figure 7.2: A slide editor. Figure 7.3: Slides as viewed as XML.

in the list causes an update to the identifier in the corresponding declaration, and mov-
ing an identifier moves the declaration. The screenshot shows how editing “list” in the
identifier list results in an update to the declaration oflist as well.

⇒

enter‘1’

Tree view

A second experimental feature is a pre-defined tree presentation of the document. The
tree is not fully editable yet.

A tree view of 1*2+3.

7.1.2 A poor man’s PowerPoint

Integrated with the Helium editor is a very basic slide editor in the style of Microsoft’s
PowerPoint. A slide presentation is a list of slides, each of which consists of a title and
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Figure 7.4: Helium slides. Figure 7.5: A game of chess: Ne3-g4?

a list of items. An item can be either a string, a Helium expression, or a nested item list.
Figure 7.2 shows the slide editor for a slide presentation of two slides. An item list may
choose from several display styles (bulleted, numbered, or enumerated with letters) and
nested lists get a smaller font size. The entire slide editor is specified in about 200 lines
of sheet code.

Because a WYSIWYG view is not always convenient, the editor also provides an XML
source view, which is shown in Figure 7.3. The source view is only partially editable, but
it is straightforward to turn it into a fully editable view.

Integration with Helium editor

The slide editor is fully integrated with the Helium editor: the list of slides is part of the
program source, and, more interestingly, a slide may contain Helium code (which may
again contain a list of slides, and so on). The Helium code may refer to declarations else-
where in the source. Moreover, the edit functionality for Helium code in a slide is exactly
the same as for code in the source editor. As an example, the screenshot in Figure 7.4
shows a slide with a Helium expression that refers to a non-existent identifierincreaze.

7.1.3 Chess board

Although it may seem a unfamiliar application of structure editing, a chess board lends
itself very well to be implemented with Proxima. Figure 7.5 shows the chess-board editor,
which is integrated with the Helium editor similar to the slide editor (except that we
cannot use Helium expressions as chess pieces). The editor is connected to a chess-move
generator for computing possible moves. In total, not counting the generator, the sheets
for the chess board add up to about 140 lines of code.
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The chess-board editor highlights all squares that are reachable by the chess piece in fo-
cus. A piece may be moved by clicking one of these highlighted squares, or by using
cut-and-paste operations. The editor does not yet support playing against the computer,
but this can be implemented straightforwardly by connecting the editor to a chess pro-
gram.

7.2 Instantiating an editor

In order to instantiate an editor in Proxima, three components need to be provided: a
document type definition, a presentation sheet, and aparsing sheet. We will give a brief
overview and a few example fragments of each of these three components. Theevaluation
sheet, reduction sheet, andscanning sheetthat are mentioned in Section 3.3 are not yet
fully supported and therefore not discussed here.

Because the sheet formalisms are still in an experimental stage, the example sheets do
not yet contain much abstraction. Hence, for clarity, we will leave out certain details. A
future version of Proxima will provide appropriate abstractions for these details.

7.2.1 Document type

As mentioned in Section 3.1.1, a Proxima document type consists of monomorphic data
types and the list type. The type definition is similar to a Haskell type definition, but there
are a few differences.

A constructor may have named children, which do not have to be globally unique. The
name is optional and defaults to the name of the child type (with a number appended in
case of more than one anonymous child). Thus, a binary tree type may be defined as:

data Tree = Bin left::Tree right::Tree | Leaf Int

Furthermore, each constructor needs to specify how many tokens are used for its presen-
tation. This information could be deduced from a presentation sheet, but for the moment
it has to be specified by hand. The tokens are specified by a list of identifiers, which is
enclosed by braces:{ident1 ... identn}. This special syntax is necessary because
the editor provides default behavior for these types. Each name gives rise to a child of
typeIDP, which represents the identity of the token. The identities are used when reusing
tokens on presentation and parsing.

Figure 7.6 shows several fragments of the document type for the editors from Section 7.1.
A document is a list of declarations, each of which can be either a Helium declaration, a
chess board, or a slide presentation.

TheDecl constructor has three tokens: a structural token for the type signature, and two
tokens for “=” and “;” tokens. The other declarations (BoardDecl andSlidesDecl)
only have a single token (for the keywords “Chess” and “Slides”). In the Exp type, we
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see one token for aPlusExp, which is for the “+” operator, and one token for aDivExp,
which is a structural token for the entire fraction “e1

e2
”. The LambdaExp has two tokens

(“λ” and “→”), and theBoolExp andIntExp both have one. The rest of the types have
structural presentations and thus contain no tokens.

Thelayout child of Decl is a boolean value that specifies whether or not automatic lay-
out it turned on. The value is interpretation extra state, since it is not presented.Decl also
has a boolean childfolded specifying whether the right-hand side is visible or folded.
Ideally, folded would be presentation extra state, but since the prototype does not yet
support user-defined presentation extra state, thefolded state is explicitly specified as
part of the document type.

Besides some of the types needed for the Helium editor, the figure also contains the type
definitions for the chess board. The board consists of eight rows, each consisting of eight
squares. A square contains a chess piece, which is either one of the six kinds of chess
pieces, orNothing. (The editor does not yet have aMaybe type for optional values.)

For brevity, we do not show the definitions of the rest of the (implemented) Helium lan-
guage types, nor the types for the slide presentations. However, all of these types are
straightforward, and the entire type definition for the three examples together is about 60
lines of code.

7.2.2 Presentation sheet

The presentation sheet is an attribute grammar that specifies the presentation as a synthe-
sized attributepres :: Xprez. Besides the presentation, arbitrary inherited and synthe-
sized attribute may be specified. Furthermore, for each document node, there are a number
of predefined attributes, such as its path from the root and a default tree presentation.

As explained in Section 3, a presentation may be eitherparsingor structural, depend-
ing on whether or not it allows presentation-oriented editing. If a presentation supports
presentation-oriented editing, this is specified in the presentation sheet with the combina-
torparsing. On the other hand, if the presentation does not support presentation-oriented
editing, we use the combinatorstructural. The choice between parsing or structural
presentations also affects the parsing sheet, as will be explained in the next section.

To support editing, the presentation should be constructed according to several guidelines,
which are not enforced yet. Besides containing aparsing or structural combinator, a
presentation must encode the document location, and modify the background color when
it is in focus.

Although the functions for marking the location and presenting the focus are simple,
they contain explicit references to attributes which are not of interest to this discussion.
Because the attribute grammar compiler does not support first-class AG’s, we cannot
abstract over the location and focus functions yet. Hence, we will denote the two functions
by location andfocus.
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data Root = Root decls::[Decl]

data Decl = Decl layout::Bool folded::Bool Ident Exp { idP0, idP1, idP2 }

| BoardDecl Board { idP0 }

| SlidesDecl Slides { idP0 }

data Exp = PlusExp exp1::Exp exp2::Exp { idP0 }

| DivExp exp1::Exp exp2::Exp { idP0 }

| LamExp param::Ident body::Exp { idP0, idP1 }

...

| LetExp [Decl] Exp { idP0, idP1 }

| BoolExp Bool { idP0 }

| IntExp Int { idP0 }

...

data Board = Board r1::BoardRow r2::BoardRow r3::BoardRow r4::BoardRow

r5::BoardRow r6::BoardRow r7::BoardRow r8::BoardRow { }

data BoardRow = BoardRow ca::Square cb::Square cc::Square cd::Square

ce::Square cf::Square cg::Square ch::Square { }

data Square = Square piece::Piece { }

data Piece = King color::Bool { } | ... | Pawn color::Bool { } | Nothing { }

Figure 7.6: Fragments of Proxima document type definitions.

We discuss a number of examples from the presentation sheets of the editors in Sec-
tion 7.1.

The presentation of a fraction

The first example is the presentation of a Helium fraction expression, which makes use
of the frac combinator from Section 6.2.4. Each Helium expression needs to show a
squiggly line when it is the location of a type error and, furthermore, it defines a popup
menu for beta-reduction edit operations. We denote the two functions that implement this
behavior bysquiggle andadd reduction menu, analogous tolocation andfocus.

The presentation for theDivExp constructor ofExp is straightforward. TheSEM keyword
denotes the start of an attribution rule (also called a semantic function). The presentation
is a synthesized attributepres, which is denoted bylhs.pres. The fraction is presented
as aparsing presentation consisting of a single structural token.

SEM Exp | DivExp exp1::Exp exp2::Exp { idP0 }
lhs.pres = location . parsing . focus . squiggle . add reduction menu $

tokens [ structToken @idP0 (frac @exp1.pres @exp2.pres)]
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The presentation of a lambda expression

The second example is the presentation of a Helium lambda expression, such asλx→x+1.
In the presentation we make use a functionkey to display a string in keyword color (i.e.
the constantkeyColor). The definition ofkey contains the applicationstringToken
id str, which presentsstr as a token with identityid.

key :: IDP -> String -> Xprez

key id str = stringToken id str ‘withColor‘ keyColor

Unlike the fraction, a lambda expression is aparsing presentation. This means that for
the presentation of a lambda node, the tokens of its previous presentation must be reused.
The presentation consists of two tokens (“λ” and “→”). For these tokens,@idP0 and
@idP1 contain the identities of the tokens that were used by the parser to construct the
node. In order to reuse the tokens, the identities are passed tokey. If the node has not been
parsed before, the presentation identities have a special value that causes the generation
of a unique identity.

SEM Exp | LamExp param::Ident body::Exp { idP0, idP1 }
lhs.pres = location . parsing . focus . squiggle . add reduction menu $

tokens [ key @idP0 [lambdaSym] ‘withFont‘ "Symbol"

, @param.pres

, key @idP1 [arrowSym] ‘withFont‘ "Symbol"

, @body.pres ]

Note that the lambda and arrow symbols are presented as characters of the “Symbol” font.

The presentation of a chess-board square

A presentation sheet may also specify edit behavior. An example of this is found in the
presentation of a square in the chess-board editor. When a square is reachable by the piece
in focus, it displays a marker (see Figure 7.5) on top of itself. The marker specifies its
own mouse-click behavior: on a mouse click, the piece in focus is moved.

We show only the interesting part of the presentation, which displays the marker and
specifies its edit behaviour. This is done by a functionpMove, which is applied to the rest
of the presentation of the square (denoted bysquare presentation ).

The squares of a chess board have an inherited attribute@lhs.possibleMoves which is
a list of possible destinations of the chess piece in focus. The local functionpMove first
checks whether the location of the presented square(@lhs.colNr, @lhs.rowNr) is in
this list. If the square is not reachable thenpMove returnspres unchanged. If the square
is reachable,pMove returns an overlay with a marker (mrk) in front ofpres. Furthermore,
the marker associates the edit operation(move @pth @focus) with a mouse click. The
move edit operation moves the piece from the square in focus to the presented square.
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SEM Square | Square piece::Piece

lhs.pres = location . structural $

pMove square presentation

where pMove pres =

if (@lhs.colNr, @lhs.rowNr) ‘elem‘ @lhs.possibleMoves

then overlay [ mrk ‘withMouseDown‘ move @focus @pth

, pres ]

else pres

Because the chess board has its own focus representation, there is no application offocus.

7.2.3 Parsing sheet

A parsing sheet is specified in Haskell, using a parser-combinator library [83]. A parser
takes a presentation tree as input.

Because a presentation may consist of parsing and structural parts, which need to be
treated differently, the parsing sheet consists of two different kinds of parsers. For a
structuralpresentation, we need to specify arecognizer, which is a very basic parser that
follows the structure of the presentation. On the other hand, for aparsingpresentation,
we specify a regular combinator parser.

If a document node has interpretation extra state, not all of its children are in the presenta-
tion. Hence, the parser will not get enough information to construct the node. In that case,
we need to reuse the values of the missing children from the previous document. We use
the location information from the parsed tokens to determine the document node of which
they are the presentation. In case a node of the right type and constructor is found, we
take the values of missing children from this node. If the tokens originate from different
document nodes, the first node is used.

Because the syntax of reusing may be somewhat confusing without additional explana-
tion, we use a special notation: if we wish to reuse thei-th child for a constructorConstr,
this is denoted by:

reuse (Constr child1 ... childi ... childn)

We briefly discuss the basic notation for the parsers in the examples. The<*> combinator
composes two parsers sequentially, yielding a parser that succeeds only if both its com-
ponent parsers succeed. To combine the results of a number of sequentially composed
parsers, we use the<$> combinator, which takes a function and a parser and applies
the function to the result of the parser. Iff <$> is applied to a sequential composi-
tion of n parsers, the functionf gets the results of these parsers as arguments. Thus,
adopting thereuse syntax mentioned above, we can specify a parser for a constructor
Constr c1...cn :: T as:
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(\c1 ... cn -> reuse (Constr c1...cn))

<$> parser1 <*> parser1 <*> ... <*> parsern

In general, a Proxima parser for typeT consists of a number of alternative parsers (each
for type T), which are combined using the choice combinator<|>. Often, there is one
alternative parser for each constructor ofT.

In reality, many other parser combinators exist, and the actual structure of the parsers
does not have to be exactly as we explained, but the situation above resembles the ex-
ample parsers. For more information about the parsing library, the reader is referred to
Swierstra [83], Hutton [37], or Fokker [27].

The declaration parser

A declaration may be a Haskell declaration, a slide presentation, or a chess board. If it
is a Haskell declaration, we distinguish a normal declaration from a collapsed one, which
has “...” for the presentation of its right-hand side. Thus, we get four alternatives.
Furthermore, a Haskell declaration may be preceded by a generated type signature, which
is recognized by a functionrecognizeTypeDecl.

The declaration parser combines the four alternative parsers with the choice combinator
<|>. For a collapsed function, the presentation does not contain a right-hand sideExp,
which must therefore be reused.

parseDecl = (\tkSig idnt tk1 exp tk2 -> reuse (Decl tkSig tk1 tk2 idnt exp))

<$> recognizeTypeDecl

<*> parseIdent <*> pKey "=" <*> parseExp <*> pKey ";"

<|> (\tkSig idnt tk1 tk2 -> reuse (Decl tkSig tk1 tk2 idnt Exp))

<$> recognizeTypeDecl

<*> parseIdent <*> pKey "=" <*> pKey "..."

<|> (\tk board -> reuse (BoardDecl tk board))

<$> pKey "Chess" <* pKey ":" <*> recognizeBoard

<|> (\tk slides -> reuse (SlidesDecl tk slides))

<$> pKey "Slides" <* pKey ":" <*> recognizeSlides

The slide recognizer

A recognizer is specified as a parser that is transformed by a combinatorrecognize. The
parser part consists of parsers for each constructor of the type, which are combined using
<|> combinators. Each alternative consists of recognizers (or parsers) for the children of
the constructor, and is preceded by a special combinator that recognizes the presentation
of a specific constructor. For any constructorConstr, this special combinator is denoted
by pStructural ConstrNode, (with ConstrNode being a generated constructor).

A slide contains a title string and a list of items. The title is parsed with the primitive
parseString, whereas the item list is recognized byrecognizeItemList.
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recognizeSlide = recognize $

(\str title itemList -> reuse (Slide title itemList))

<$> pStructural SlideNode <*> parseString <*> recognizeItemList

Because recognizers exactly follow the structure of the presentation, a future version of
Proxima will most likely have support for automatically generating them from the pre-
sentation sheet.

The chess-board recognizer

If all descendants of a node have a structural presentation, and thus may not be edited at
the presentation-level, the recognizer for the node is simple. The presentation of a node
will not have been modified, and instead of descending into the presentation structure, we
may simply reuse all children.

Hence, the recognizer for the chess board is:

recognizeBoard = recognize $

(\str -> reuse (Board BoardRow BoardRow ... BoardRow)

<$> pStructural BoardNode

7.3 Prototype implementation

The main components of the architecture are the five layers, together with a user-interface
module. Each layer has a presentation and an interpretation component, which define two
functionspresent andinterpret. A special architecture module imports all component
modules, and connects thepresent andinterpret functions, thus hiding the data-flow
patterns from the layer component modules. In total, the generic part of Proxima consists
of about 15,000 lines of Haskell code.

7.3.1 Genericity

Internally, the document type is represented by a Haskell type. Because Haskell is not
a generic language, this means that after changing the document type, the editor needs
to be recompiled. It would also be possible to represent a document by an untyped tree
structure, but we choose a typed implementation because it provides type-safety for the
presentation and computation sheets, and also allows a more efficient implementation.
Although it is an interesting feature to be able to dynamically change the document type,
we do not consider this a main requirement for the editor.

All type-specific code is currently generated by a generator written in Haskell. Although
the specification of generated code lacks transparency, this method does provide the flex-
ibility that we need in this developmental stage of the Proxima project.
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An alternative to the Haskell generator is the language Generic Haskell [53]. However,
not all required functions and data types can be described elegantly in Generic Haskell yet.
Furthermore, because we also need to generate AG code, switching to Generic Haskell
will not eliminate the generator, until we also have a generic AG compiler.

7.3.2 User interface

The user interface of Proxima has been implemented with the wxHaskell library [51],
which is an elegant and fast GUI library providing enough low-level support to implement
the Proxima renderer. The library is based on the wxWidgets library, and parts of it
are generated from a wxWidgets binding to the language Eiffel. As a result, keeping
the wxHaskell library up to date with the latest developments of wxWidgets, requires
relatively little effort.

Most Haskell GUI libraries are not suitable for Proxima because they either lack the re-
quired functionality or are no longer being maintained. There are several suitable libraries
besides wxHaskell, but these are based either on the GTK library, which is still poorly
supported on windows platforms, or on Tcl/Tk, which is portable but slow.

In Proxima, the dependency on the GUI library is limited to only four modules: the
renderer module; a module for the type definitions of the renderer; a module for doing
font queries; and a module that opens the main editor window and maps GUI events to
Proxima edit gestures. Thus, the system can easily be ported to a different GUI library. In
fact, the wxHaskell port was made only recently, after most of the prototype had already
been implemented.

7.4 Future work and conclusions

Although still in a preliminary stage, the prototype already makes it possible to instantiate
a relatively advanced editor with relatively little effort. Both the slide and the chess-board
editors were implemented in only a few days. Nevertheless, the prototype was mainly
implemented as a proof-of-concept, and hence requires further development in order to
become a generally usable product.

In the remainder of this section we first discuss our experiences with Haskell as the im-
plementation language, followed by an overview of the future development of Proxima.
We make a distinction between straightforward versus more research-oriented issues.

7.4.1 Haskell

Haskell may not immediately seem the most logical candidate for implementing Proxima,
because of statefulness of the architecture. Every layer has its own state, and moreover,
different levels may point to each other. However, because the complex data-flow patterns
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are confined to a single architecture module, each layer component only has to deal with
its surrounding levels. The Proxima implementation consist of numerous algorithms over
tree structures, which benefit greatly from Haskell’s syntax for abstract data types and
pattern-matching.

On the other hand, the typical Haskell feature of lazy evaluation has not been of signifi-
cant importance (other than allowing for elegant programming), because of the overhead
associated with lazy data structures. The code that is generated by the attribute gram-
mar compiler depends on laziness, but this is also something that will most likely need
to change in the future. Instead, the attribute grammar could be analyzed and partitioned
into strict computations.

For the development of Proxima, probably the most important feature of Haskell is the
way in which combinator languages can be defined and mixed with Haskell code. The
combination of Haskell withXPREZ and parser combinators is especially useful for the
experimental stage of the prototype. Standard patterns can be expressed elegantly using
combinators, whereas experimental features can be coded explicitly. If these features
turn out useful, they can be captured by an appropriate combinator. Thus, the behavior
specified in the style sheets is highly customizable, while the code in the sheets remains
concise and transparent.

7.4.2 Basic extensions to the prototype

The prototype is in an experimental stage, which means that there is an abundance of
straightforward extensions to the system. Nevertheless, even though straightforward, the
implementation of these extensions may still require a substantial amount of work.

Besides standard editor functionality (e.g. file handling, search facility, etc.) and basic
updates to the system, we can identify several important issues that are local to a layer. We
briefly discuss each layer separately. The evaluation layer is omitted from the discussion,
because most of the future work on this layer is research-oriented.

Presentation

When the Proxima parser encounters an error, the entire parsed presentation is marked
with a parse error. This behavior does not meet the modeless editing requirement from
Chapter 2, since structure editing inside the region with the parse error is not possible
until the error is corrected. Hence, the parser needs to be able to keep the error local and
continue parsing the rest of the presentation. For parsed presentations that appear in a
structural presentation, the parse error is already kept local. For example, a parse error
in a Helium item of a slide only affects that item. Because the parser library that is used
has support for error correction, local parse errors will most likely be relatively easy to
support.

An extension of lower priority, but nonetheless straightforward, is adapting the presen-
tation layer to support dynamically loaded presentation and parsing sheets. Because the
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presentation and parsing modules are already clearly separated from the other layers, dy-
namic loading will not require any fundamental changes to the architecture.

Finally, many extensions to theXprez formalism are desirable. Examples include support
for windows, widgets, vertical formatters, and a page model. We mention these aspects
here at the presentation layer because of their impact on the presentation level. Neverthe-
less, the implementation for these features will take place mainly at the arrangement and
rendering layers, because these layers take care of computing the locations and sizes of
XPREZelements (arranging), as well as mapping them onto appropriate GUI commands
(rendering).

Layout

The scanner component of the layout layer is a function that traverses the layout tree and
tokenizes those parts of the tree that are marked for parsing. Because the specification
of the tokens is hard-coded in the scanner definition, it is not straightforward to specify
a scanner for a language that has different tokens. Instead, we need a parameterizable
scanner, which takes its token specifications from a scanning sheet.

Arrangement

The arrangement layer needs a few updates to support editable formatters. Furthermore,
because this layer performs the size and position computations for the presentation, ex-
tensions toXPREZare implemented for a large part at the arrangement layer.

Rendering

The renderer will have to provide rendering support for the extensions toXPREZ.

7.4.3 Future research

Besides the straightforward extensions to the system, there is a multitude of possible areas
for future research on Proxima. We mention a few of the important areas.

Incrementality. Probably the most important next step in the development of Proxima
is support for incrementality, which has consequences for all layers. For the layout, ar-
rangement and rendering layers, the presentation and interpretation mappings are mainly
pre-defined, and hence these layers could provide built-in support for incrementality. Nev-
ertheless, for handling larger documents, we also need incrementality on the evaluation
and presentation layers. This will require extensions to the attribute-grammar compiler.

Other issues related to incrementality are the required support for change management on
each of the data levels, as well as a mechanism for presenting and interpreting only the
necessary parts of each level (e.g. only arrange the visible part of a presentation).
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Evaluator layer. An evaluation layer must be implemented, together with language sup-
port for specifying the enriched document type. Because the enriched document is often
similar to the document, it is a hassle to specify it from scratch. On the other hand, using
the same type for both levels compromises safety. Instead, we need a formalism for spec-
ifying only those parts for which the enriched document type differs from the document
type. The enriched document type definition can be generated from that specification.

Once this functionality is available, we can establish the formalisms for the evaluation and
reduction sheets. A desirable aspect of these sheet formalisms would be the automatic
specification of a reduction sheet, given an evaluation sheet.

AG presentation patterns. The presentation sheet contains many common patterns, over
some of which the attribute-grammar formalism cannot abstract elegantly yet. Identifying
these patterns and developing extensions to the formalism will help to make the presen-
tation sheets more concise and transparent. A possible candidate for such an extension is
support for first-class attribute grammars.

Extra state. More research is needed to identify the different forms of extra state, as well
as language support for easily specifying extra state.

Focus model.Proxima has a concept of focus on the layout level as well as on the docu-
ment level. Furthermore, once the evaluation layer is implemented, there will most likely
also be a focus on the enriched document level. An integrated focus model must be de-
veloped for smoothly handling the translation of one kind of focus into another during
editing.

Transformation formalism. Edit commands are still specified with basic cut-and-paste
operations. We need a transformation formalism to easily specify type-safe transforma-
tions.

Graph support. Although a Proxima document is a tree, we could use cross-references
between tree nodes to encode graph data. It would be interesting if this data could also be
presented as a graph. Simple extensions toXPREZwill make it possible to create a graph
presentation. For editing a graph, the arrangement layer needs to provide edit operations
such as moving nodes and inserting and deleting edges. The result of these edit operations
needs to be interpreted as a document update.

A first priority is the instantiation of more example editors. Especially a word-processing
editor will be interesting, because this kind of application has not yet been investigated
extensively with Proxima. The example editors will suggest more areas of future research,
and allow us assign priorities to each area as well. Furthermore, by examining common
patterns in the sheets of the example editors, we can determine the useful abstractions and
libraries for these sheets.
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Finally, creating editor instances for editing document type definitions, presentation sheets
and parsing sheets is not only an interesting exercise by itself, but will also make editor
instantiation easier.



Chapter 8

Conclusions and further
research

In this thesis, we have introduced the presentation-oriented structure editor Proxima.
Proxima provides an intuitive and user-friendly way of editing for complex document
presentations which may contain derived structures.

In Chapter 2 we investigated a number of use cases for a generic editor, and formulated a
set of functional requirements based on these use cases. We have provided an evaluation
of existing generic editors with regard to the requirements. It turns out that none of the
existing systems is able to handle all of the use cases. In our opinion, the reason for this
is that these editors either lack the power to support the complex presentations of the use
cases, or have an edit model that is overly restrictive. The chapter ended with a brief
description of the Proxima editor, which has been designed to meet the requirements and
will be able to handle all of the use cases.

Proxima has a layered architecture that makes it possible to support both presentation-
oriented and document-oriented editing. An overview of the layers and data levels of the
architecture has been provided in Chapter 3, followed by a specification in chapters 4
and 5.

In Chapter 6 we introduced the declarative presentation formalismXPREZ. The language
is a Haskell combinator library for creating graphical presentations with an advanced
alignment model. Using Haskell’s abstraction facilities, complex presentations may be
defined in a concise way.

A prototype for Proxima has been implemented and was discussed Chapter 7. To instan-
tiate an editor, a basic Haskell document type definition must be provided together with
a presentation sheet and a parsing sheet. The presentation sheet is an attribute grammar,
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and the parsing sheet is a combinator parser. A number of example editors have been
instantiated with the prototype.

8.1 Further research

The formal specification has provided a wildcard representation for extra-state equiva-
lence classes. However, the specified reuse function is rather basic and only allows reusing
extra state after simple edit operations. The specification should be improved with a more
advanced reuse function, a sketch of which was provided. Furthermore, the specification
for an editor supporting duplicates in the presentation was only informal. A more formal
definition of the notion of duplication as well as of the mechanism of ignoring duplicates
is needed to establish a formal specification for the editor that supports duplicates.

In Proxima, functions for both the presentation and the interpretation direction need to be
specified. The inverse of the presentation sheet is the parsing sheet, and the inverse of
the evaluation sheet is the reduction sheet. Because specifying these inverses by hand is
a possible source of errors, a bidirectional presentation formalism, which automatically
generates an inverse function, is desirable.

The evaluation layer of Proxima is an ideal place for such a bidirectional presentation (or
rather evaluation) formalism. Thus, the reduction sheet will be automatically generated
from the evaluation sheet. For the presentation layer the situation is somewhat more com-
plicated because it does not seem realistic to assume that an efficient parser can always
be generated automatically from the presentation sheet. On the other hand, many parts
of the presentation are straightforward and could be inverted automatically. In the pro-
totype, for example, it is already clear how the structure recognizers in the parsing sheet
can be derived from the presentation sheet. For the more difficult parts of the presenta-
tion, the presentation sheet could contain special directives for parsing, or even an explicit
specification of the appropriate part of the parser.

Chapter 7 already provided an overview of the future research concerning the Proxima
prototype. We recapitulate a few main issues here. The most important area of research is
support for incrementality, consisting both of built-in incremental behavior for the lower
layers, as well as the application of techniques for incremental attribute evaluation to the
attribute-grammar compiler. A second important area concerns the evaluation layer for
which we need to establish the formalisms for the sheets, as well as provide an imple-
mentation. Furthermore, we need extensions to the attribute grammar formalism and the
XPREZpresentation language. And finally, libraries of useful functions must be compiled,
to facilitate the specification of common editor behavior.
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8.2 Final remarks

The approach taken for Proxima is different from most other generic editing projects.
Most of these projects take as the starting point a specification formalism that guarantees
a correct and efficient editor for a limited range of applications. Proxima, on the other
hand, provides a general architecture with presentation and computation formalisms that
are powerful enough to build serious editor applications. In the initial stages of the Prox-
ima project, it is left to the editor designer to guarantee safety and efficiency of the imple-
mented editor. Support for automatic interpretation and incrementality will be added at a
later stage.

Because both the presentation and the interpretation need to be specified, it is possible
to specify an editor for which the parser does not match the presentation. Furthermore,
because the presentation formalism allows arbitrary computations, it is possible to specify
a presentation that is too slow for editing, or even crashes. Nevertheless, the safety of an
editor built with Proxima is already much easier to guarantee than if a similar editor had
been built by hand. Further, in practice, it turns out to be rather straightforward to avoid
inconsistencies between the presentation and interpretation functions.

An advantage of our approach is that even in an early stage, complex editors can be spec-
ified (albeit with a little more effort). And, moreover, it is possible to specify editors for
which automatic interpretation is not yet an option. A related advantage is that by build-
ing and experimenting with editors, it becomes clear which parts of the generic system
should get the highest development or research priorities.

Even without the language support and libraries for common presentation patterns, it is
already straightforward to specify a complex editor in Proxima. Thus, the Proxima pro-
totype shows that it is possible to combine a powerful presentation formalism with a
modeless integration of document-oriented and presentation-oriented editing. The result-
ing editors are powerful, yet easy to use.
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Samenvatting

Een computergebruiker heeft over het algemeen te maken met een grote verscheiden-
heid aan documenten, zoals tekstbestanden, spreadsheets en webpagina’s. De applicaties
waarmee deze documenten bewerkt kunnen worden zijn zogenoemdeeditors, met als
voorbeelden tekstverwerkers, spreadsheet-applicaties en HTML-editors. Ondanks de ui-
terlijke verschillen tussen editors vertonen de edit-operaties (tekst invoeren, selecteren,
knippen/plakken, etc.) sterke overeenkomsten.

Proxima is een generieke editor waarmee een groot aantal verschillende documenttypes
bewerkt kan worden. Om in te zien wat een generieke editor precies is, kunnen we editen
vergelijken met het maken van vruchtensap. Van sinaasappels, bananen en druiven kan
sap gemaakt worden met een citruspers, een blender en een druivenpers. Er zijn dus drie
verschillende apparaten nodig, die elk een eigen gebruiksaanwijzing hebben. Bovendien
moet voor een ander soort vrucht misschien weer een nieuw apparaat aangeschaft worden.
Handiger is het daarom gebruik te maken van een algemene (of generieke) sapcentrifuge,
zoals de Juice TigerTM in Figuur 1 op de volgende bladzijde. Door middel van verschillen-
de hulpstukken kan dit apparaat sap maken van diverse soorten vruchten en zo een aantal
losse apparaten vervangen.

Zoals de sapcentrifuge een aantal losse fruitpersen vervangt, zo kan een generieke edi-
tor een aantal losse editors vervangen (zie Figuur 2). De rol van hulpstukken wordt nu
vervuld doorstyle sheets, waarin het specifieke gedrag van de editor voor een bepaald do-
cumenttype beschreven wordt. De voordelen van een generieke editor zijn vergelijkbaar
met die van de sapcentrifuge. In plaats van verschillende applicaties is er bijvoorbeeld
nog maaŕeén applicatie, met een uniforme user interface. Het belangrijkste voordeel is
echter dat het bouwen van een editor voor een nieuw type document met een generieke
editor veel minder inspanning vergt dan op de conventionele wijze. Dit is vooral gunstig
voor het bouwen van editors voor XML documenten.

Ondanks de voordelen zijn generieke editors echter weinig populair. Om een beeld te
krijgen van de reden hiervoor, werpen we eerst een wat nauwkeuriger blik op de interne
structuur van een generieke editor.

In de meeste editors kunnen we twee niveaus onderscheiden: hetdocumenten depresen-
tatie. Het document is een interne representatie van de data die door de gebruiker geëdit
wordt. Het document is niet rechtstreeks zichtbaar, maar wordt afgebeeld op een presen-
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Figuur 1: Een generieke sapcentrifuge.
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Figuur 2: Een generieke editor.

tatie die aan de gebruiker getoond wordt. De presentatie kan variëren van platte tekst tot
aan opgemaakte tekst met grafische elementen zoals lijnen en plaatjes. Het afbeelden van
het document op de presentatie wordt het presentatie proces genoemd, en het weer terug
afbeelden van een gewijzigde presentatie op een nieuw document het interpretatie proces.

Op het niveau van zowel het document als de presentatie zijn edit-operaties denkbaar.
Een documentgerichte edit-operatie is een verandering gericht op de structuur van het
document, zoals het verwisselen van twee hoofdstukken. Presentatiegerichte operaties
daarentegen zijn gericht op wat er op het scherm zichtbaar is. Voor een tekstuele presen-
tatie betekent dit dat de tekst vrij geëdit kan worden, zelfs als dit niet correspondeert met
een edit-operatie op de structuur.

Gerelateerd aan dit onderscheid tussen edit-operaties kunnen bestaande generieke editors
in twee categoriëen ingedeeld worden. Aan de ene kant zijn er desyntax-directededitors,
die een krachtig presentatiemechanisme kunnen bieden, maar vrijwel alleen documentge-
richte edit-operaties bieden. Dit wordt door gebruikers vaak als beperkend ervaren. De
andere categorie wordt gevormd door desyntax-recognizingeditors. Deze editors staan
het vrij editen van de presentatie toe, maar beschikken weer over een beperkt presentatie-
mechanisme. Er bestaan ook tussenvormen (hybrid editors), maar die zijn vrijwel altijd
te beschouwen als hoofdzakelijk syntax-directed danwel syntax-recognizing editors.

In dit proefschrift onderzoeken we hoe de voordelen van een generieke editor met een
krachtig presentatiemechanisme te combineren zijn met een presentatiegericht edit model.

Na een algemene inleiding en een introductie van relevante begrippen in Hoofdstuk 1,
wordt in Hoofdstuk 2 een aantal uiteenlopende toepassingen van een generieke editor
beschreven. Onder deze voorbeelden bevinden zich bekende applicaties als een editor
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voor programmacode, een tekstverwerker en een formule editor, maar bijvoorbeeld ook
een elektronisch belastingformulier. Tezamen helpen de voorbeelden het toepassingsge-
bied van de Proxima editor vast te leggen. Aan de hand van de voorbeelden, die elk
hun specifieke eisen stellen aan de editor, formuleren we een zestal functionele eisen, of
requirements, voor een generieke editor:

Genericiteit. Uitgangspunt van het onderzoek is dat de editor generiek is, en niet ont-
worpen voor een specifiek documenttype.

Berekeningen in de presentatie.De presentatie moet berekende waarden en structuren
kunnen bevatten, zoals hoofdstuknummers en een automatische inhoudsopgave.

Krachtig grafisch presentatieformalisme. Het presentatieformalisme moet krachtig ge-
noeg zijn om tekstverwerkingsdocumenten met wiskundige formules te tonen, maar
ook een elektronisch formulier met invoervelden en knoppen.

Presentatiegericht en documentgericht editen.Edit-operaties op zowel het document
als op de presentatie moeten ondersteund worden. Tevens moeten edit-operaties
voor specifieke documentsoorten gespecificeerd kunnen worden.

Modeless editen.Het moet het mogelijk zijn om eenvoudig te wisselen tussen presen-
tatiegericht en documentgericht editen, zonder de editor expliciet in een andere
toestand (mode) te moeten brengen.

Extra state. In sommige gevallen bevat een document informatie die niet in de presenta-
tie zichtbaar is, en soms bevat de presentatie weer informatie die niet in het docu-
ment opgeslagen is. Deze informatie noemen weextra state. De editor moet beide
vormen van extra state ondersteunen.

Aan de hand van bovenstaande requirements wordt een aantal bestaande systemen onder
de loep genomen en met elkaar vergeleken. Het blijkt dat geen van de bestaande systemen
aan alle requirements voldoet, wat betekent dat er dus geen systeem is dat alle voorbeel-
den kan ondersteunen. Eén van de problemen is dat een editor aan de ene kant moet
beschikken over een krachtig presentatiemechanisme met ondersteuning voor berekende
waarden, grafische elementen en eventuele duplicatie van informatie. Aan de andere kant
moet voor een gebruiksvriendelijk edit model het editen van de presentatie mogelijk zijn.
Dit laatste houdt echter in dat een gewijzigde presentatie terugvertaald (geı̈nterpreteerd)
moet worden naar een nieuw document, wat moeilijker is naarmate het presentatiemecha-
nisme complexer is.

In hoofdstuk 3 stellen we een gelaagde architectuur vast, voor een editor die voldoet aan
de zes requirements. Het probleem om presentatiegerichte editfunctionaliteit te bieden
wordt door de gelaagde architectuur opgesplitst in een aantal eenvoudigere deelproble-
men. De lagen vinden hun oorsprong in het presentatie proces dat in een aantal logische
stappen verdeeld kan worden. Voorbeelden van deze stappen zijn het berekenen van afge-
leide waarden, het bepalen van de logische opmaak van de presentatie, tot aan het uitre-
kenen van alle posities en het tonen van de presentatie aan de gebruiker. Het interpretatie
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proces doorloopt dezelfde stappen in omgekeerde volgorde. Elk van de tussenresulaten
wordt een data-niveau oflevelgenoemd. Tussen twee niveaus bevindt zich een laag (of
layer) die waarden van het ene niveau op het andere afbeeldt in zowel de presentatie als
interpretatie richting. Het hoofdstuk geeft een overzicht van de verschillende data-niveaus
en de lagen daartussen. De presentatie en interpretatie processen worden beschreven met
behulp van voorbeelden.

Hoofdstukken 4 en 5 geven een specificatie van de Proxima editor. Hoofdstuk 4 is een
inleiding op de specificatie, en geeft een model van het edit proces. Ook worden de be-
grippen extra state en duplicaten in de presentatie beschreven. De specificatie zelf is het
onderwerp van Hoofdstuk 5. Het uitgangspunt is dat, gegeven een presentatiefunctie,
een corresponderende interpretatiefunctie gespecificeerd wordt. De specificatie wordt in
een aantal stappen ontwikkeld. De eerste stap is de specificatie van een editor die uit
slechtséén laag bestaat en geen rekening houdt met extra state. Deze specificatie wordt
vervolgens stap voor stap uitgebreid tot de specificatie van een gelaagde editor met onder-
steuning voor extra state. Het hoofdstuk eindigt met een schets van de behandeling van
presentaties die duplicaten kunnen bevatten.

Om een document af te beelden op het scherm maakt Proxima gebruik van de presentatie-
taalXPREZ. XPREZ is een declaratieve presentatietaal die geschikt is voor een verschei-
denheid aan toepassingen. Hoofdstuk 6 inventariseert een aantal requirements voor een
presentatietaal en bevat een vergelijking van een aantal van zulke talen. Vervolgens wordt
aan de hand van voorbeelden een informele beschrijving van de taalXPREZgegeven.

Hoofdstuk 7 beschrijft het prototype van Proxima, dat geı̈mplementeerd is in de functio-
nele programmeertaal Haskell. Het prototype is platform-onafhankelijk en voldoet al aan
vier van de zes genoemde requirements, terwijl aan de overige twee (presentatieforma-
lisme en modelessness) grotendeels is voldaan. De berekende waarden en de presentatie
van het document worden gespecificeerd met behulp van een attributengrammatica. Voor
de interpretatie wordt gebruik gemaakt van een combinator parser. Het hoofdstuk toont
screenshots van het prototype en bevat ook een aantal voorbeelden van de style sheets
waarmee specifieke editors beschreven worden.

Ondanks de nog prille staat van het prototype is het al mogelijk om met relatief weinig
moeite complexe editors te bouwen die toch prettig in het gebruik zijn. Op basis van de
ervaringen met het prototype kunnen we concluderen dat de combinatie van een krachtig
presentatiemechanisme en een presentatiegericht edit model zeker mogelijk is.
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